本课配套习题挑战模式1/5
如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,若点A在对称轴l右侧的二次函数图象上运动时,则∠ANM( )∠ONM;
A: > |
B: < |
C: = |
D: 不能确定 |
- 提示1:PHA+6L+HQeS9nEFI5Z6C55u05LqO55u057q/bO+8jOebtOe6v2zkuI546L205Lqk5LqO54K5RO+8jOeUsUHlnKjkuozmrKHlh73mlbDlm77osaHkuIrvvIzorr5B5Z2Q5qCHPC9wPg==
- 提示2:PHA+5YaN55SxT+eahOWdkOagh++8jOihqOekuuWHuuebtOe6v0FP55qE6Kej5p6Q5byP77yM6L+b6ICM6KGo56S65Ye6Te+8jE7lj4pI55qE5Z2Q5qCH77yM5b6X5Ye6T0TvvIxORO+8jEhB77yM5Y+KTkg8L3A+
- 提示3:PHA+5Zyo55u06KeS5LiJ6KeS5b2iT05E5Lit77yM5Yip55So6ZSQ6KeS5LiJ6KeS5Ye95pWw5a6a5LmJ6KGo56S65Ye6dGFu4oigT05N77yM5Zyo55u06KeS5LiJ6KeS5b2iQU5I5Lit77yM5Yip55So6ZSQ6KeS5LiJ6KeS5Ye95pWw5a6a5LmJ6KGo56S65Ye6dGFu4oigQU5N77yM5YyW566A5ZCO5b6X5YiwdGFu4oigT05NPXRhbuKIoEFOTe+8jOWPr+W+l+WHuuKIoE9OTT3iiKBBTk08L3A+
- 答案:Qw==
PGRpdj7op6PvvJrikaDor4HmmI7vvJrov4dB5L2cQUjiiqVs5LqOSO+8jGzkuI546L205Lqk5LqO54K5RO+8jOWmguWbvuaJgOekuu+8mjwvZGl2PjxkaXY+6K6+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVks2eHVWbm9BQUFEVG5vRGRYbzQ0OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WSzZ4dVZub0FBQURUbm9EZFhvNDQ4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1OSI+77yM5Y+IT++8iDDvvIww77yJ77yMPC9kaXY+PGRpdj7iiLTnm7Tnur9BT+eahOino+aekOW8j+S4ujxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZLN0E0OXFrQUFBRXVqNWFLTlk5MDIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVks3QTQ5cWtBQUFFdWo1YUtOWTkwMi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMjgiPjwvZGl2PjxkaXY+5YiZTe+8iDTvvIxtLTjvvInvvIxO77yINO+8jC1t77yJ77yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVks3RDloLWlBQUFEU1JNaW5GbzM1OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WSzdEOWgtaUFBQURTUk1pbkZvMzU5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1NSI+77yMPC9kaXY+PGRpdj7iiLRPRD0077yMTkQ9be+8jEhBPW0tNO+8jDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZLLVJGZUJsQUFBRFRRMVU4dGM5MzUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkstUkZlQmxBQUFEVFExVTh0YzkzNS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMjAiPjwvZGl2PjxkaXY+5ZyoUnTilrNPTkTkuK3vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WS19BYUxoX0FBQUQ5VVQ5dDdFMjkyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZLX0FhTGhfQUFBRDlVVDl0N0UyOTIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTY5Ij48L2Rpdj48ZGl2PuWcqFJ04pazQU5I5Lit77yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVktfRElOM1NBQUFHSUM2bFFEVTgwNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WS19ESU4zU0FBQUdJQzZsUURVODA2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjMyMCI+PC9kaXY+PGRpdj7iiLR0YW7iiKBPTk09dGFu4oigQU5N77yMPC9kaXY+PGRpdj7liJniiKBBTk094oigT05N77ybPC9kaXY+PGRpdj48aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WS19DeXZYM0FBQWlFaGdOcmRvMzAyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZLX0N5dlgzQUFBaUVoZ05yZG8zMDIucG5nIiBoZWlnaHQ9IjE3NiIgd2lkdGg9IjE4NCI+PC9kaXY+
本课配套习题挑战模式2/5
在平面直角坐标系xOy中,将抛物线y=2x2沿y轴向上平移1个单位,再沿x轴向右平移两个单位,平移后抛物线的顶点坐标记作A,直线x=3与平移后的抛物线相交于B,与直线OA相交于C. 点P在平移后抛物线的对称轴上,如果△ABP与△ABC相似,所有满足条件的P点坐标为( ).
A: |
B: |
C: |
D: |
- 提示1:PHA+55Sx5LqO5LiN56Gu5a6a5piv5ZOq57uE6KeS5a+55bqU55u4562J77yM5Zug5q2k6KaB5YiG5Lik56eN5oOF5Ya16L+b6KGM6K6o6K6677yaPGJyPuKRoOW9k+KIoFBCQT3iiKBDQkHml7bvvIzlm5vovrnlvaJQQUNC5piv5bmz6KGM5Zub6L655b2i77yM5Zug5q2kUEE9QkPvvIznlLHmraTlj6/msYLlh7pQ54K555qE5Z2Q5qCHLiDnu7zkuIrmiYDov7DljbPlj6/msYLlh7rnrKblkIjmnaHku7bnmoRQ54K555qE5Z2Q5qCHLjwvcD4=
- 提示2:PHA+4pGh5b2T4oigQVBCPeKIoEJBQ+aXtu+8jOWPr+agueaNruWFs+S6jkFQ77yMQULvvIxCQ+eahOavlOS+i+WFs+ezu+W8j++8jOaxguWHukFQ55qE6ZW/77yM6L+b6ICM5Y+v5rGC5Ye6UOeahOWdkOaghy48L3A+
- 答案:RA==
PGRpdj7op6PvvJriiLVQQeKIpUJD77yMPC9kaXY+PGRpdj7iiLTiiKBQQUI94oigQUJDPC9kaXY+PGRpdj7ikaDlvZPiiKBQQkE94oigQkFD5pe277yMUELiiKVBQ++8jDwvZGl2PjxkaXY+4oi05Zub6L655b2iUEFDQuaYr+W5s+ihjOWbm+i+ueW9ou+8jDwvZGl2PjxkaXY+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVkxUQVJYSTZBQUFDV3hSc3J3STc4NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WTFRBUlhJNkFBQUNXeFJzcndJNzg0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9Ijk5Ij4uPC9kaXY+PGRpdj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WTFRDS253ZkFBQUNhVDhqOTRzOTUyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZMVENLbndmQUFBQ2FUOGo5NHM5NTIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTAwIj48L2Rpdj48ZGl2PuKRoeW9k+KIoEFQQj3iiKBCQUPml7bvvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTFR4YS1UQUFBQUNSWDdRTjJvMjUxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZMVHhhLVRBQUFBQ1JYN1FOMm8yNTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNjUiPjwvZGl2PjxkaXY+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkxUaDZrMHFBQUFDVGtDY2tJVTY2Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTFRoNmswcUFBQUNUa0Nja0lVNjY3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9Ijc2Ij48L2Rpdj48ZGl2PuWPiOKItTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZMWHh4WkM5QUFBRHdYZXExSWMxMTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVkxYeHhaQzlBQUFEd1hlcTFJYzExMi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMjgiPjwvZGl2PjxkaXY+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkxXQXRBWEZBQUFCMlNpOE5FODY5Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTFdBdEFYRkFBQUIyU2k4TkU4Njk3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjUzIj48L2Rpdj48ZGl2PuKItDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZMWHdWWW5OQUFBQ25nRDdQbUUwNDMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVkxYd1ZZbk5BQUFDbmdEN1BtRTA0My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMTQiPuWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZMV0FpZFdyQUFBQ1Z6THVUOTA1NTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVkxXQWlkV3JBQUFDVnpMdVQ5MDU1NS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI3MCI+PC9kaXY+PGRpdj7nu7zkuIrmiYDov7Dmu6HotrPmnaHku7bnmoRQ54K55pyJPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkxYQWlucDhBQUFEUTE2eG9MMDA5My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTFhBaW5wOEFBQURRMTZ4b0wwMDkzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEyNyI+PC9kaXY+PGRpdj48aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WTFdEX3ZXTEFBQTdsanpmNmZNODc2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZMV0RfdldMQUFBN2xqemY2Zk04NzYucG5nIiBoZWlnaHQ9IjIzMiIgd2lkdGg9IjI1MSI+PC9kaXY+
本课配套习题挑战模式3/5
如图,正比例函数与二次函数y=-x2+2x+c的图象都经过点A(2,m). 若二次函数图象的对称轴与正比例函数的图象相交于点B,与x轴相交于点C,点Q是x轴的正半轴上的一点,如果△OBC与△OAQ相似,
点Q的坐标为( ).
A: |
B: |
C: |
D: |
- 提示1:PHA+5YWI5rGC5b6Xbe+8jOWGjeWwhueCuUHnmoTlnZDmoIfku6PlhaXkuozmrKHlh73mlbB5PS14PHN1cD4yPC9zdXA+KzJ4K2PvvIzljbPlj6/lvpflh7pj77yMPC9wPg==
- 提示2:PHA+6K6+Ue+8iHjvvIxv77yJ77yIeO+8njDvvIkuIOW9k3g9MeaXtuaxguWHuueCuULjgIFD55qE5Z2Q5qCH77yM5YaN55Sx4pazT0JD4oi94pazT0FR5ZKM4pazT0JD4oi94pazT1FB5pe277yM5YiG5Yir5rGC5b6X54K5UeeahOWdkOagh+WNs+WPry48L3A+
- 答案:RA==
PGRpdj7op6PvvJrvvIgx77yJ4oi15q2j5q+U5L6L5Ye95pWwPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkxxeV9uNjFBQUFCNEh3VU9NODEyMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTHF5X242MUFBQUI0SHdVT004MTIzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjUzIj7kuI7kuozmrKHlh73mlbB5PS14PHN1cD4yPC9zdXA+KzJ4K2PnmoTlm77osaHpg73nu4/ov4fngrlB77yIMu+8jG3vvIk8YnI+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVkx2Uk9CVTNBQUFDcDJuT2UwZzE1MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WTHZST0JVM0FBQUNwMm5PZTBnMTUxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1MCI+PC9kaXY+PGRpdj7iiLRB77yIMu+8jDPvvInvvIwzPS00KzQrYzxicj7iiLRjPTM8YnI+4oi06L+Z5Liq5LqM5qyh5Ye95pWw55qE6Kej5p6Q5byP5piveT0teDxzdXA+Mjwvc3VwPisyeCszPGJyPuiuvlHvvIh477yMb++8ie+8iHjvvJ4w77yJLiDlvZN4PTHml7bvvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTHVTQWRMekFBQUNMeUNzazYwODM2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZMdVNBZEx6QUFBQ0x5Q3NrNjA4MzYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iODkiPjxicj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WTHppMjFScUFBQURSaFFFMkZjNDUzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZMemkyMVJxQUFBRFJoUUUyRmM0NTMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTM0Ij48YnI+5b2TPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkx5eUxTb29BQUFDUHdKYkMzczExNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTHl5TFNvb0FBQUNQd0piQzNzMTE1LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjEwNyI+5pe277yM5pyJPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVFL3JCQUNGRk1NVkx6U0Y3QVhBQUFDUEhja1NSZzYxNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTHpTRjdBWEFBQUNQSGNrU1JnNjE1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjYyIj4s5b6XT1E9Mu+8jFHvvIgy77yMMO+8iTxicj7lvZM8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTHp6akF1b0FBQUNQZ3loMmFJNjA0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZMenpqQXVvQUFBQ1BneWgyYUk2MDQucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTA3Ij7vvIzmnIk8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTHp3UmlRd0FBQUNNbVNzQ2JnODgxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RS9yQkFDRkZNTVZMendSaVF3QUFBQ01tU3NDYmc4ODEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNjIiPu+8jOW+lzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZMM1FwbWItQUFBRER4UU01aW8wMzIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkwzUXBtYi1BQUFERHhRTTVpbzAzMi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMzciPjxicj7iiLTngrlR55qE5Z2Q5qCH5pivPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkx1eTgzRXVBQUFDOVhRX0E4ZzcxMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTHV5ODNFdUFBQUM5WFFfQThnNzEwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEyOSI+PC9kaXY+
本课配套习题挑战模式4/5
如图,二次函数的图象经过点,且顶点C的横坐标为4,该图象在x轴上截得线段AB长为6. 在抛物线上是否存在点Q,使△QAB与△ABC相似,出点Q的坐标为( )
A: |
B: |
C: |
D: |
- 提示1:PHA+5qC55o2u5Ye95pWw55qE5a+556ew5oCn77yM5Y+I55SxQUI9Nu+8jOWvueensOi9tHg9NO+8jOWNs+WPr+axguW+l0HvvIxC55qE5Z2Q5qCHLCDliKnnlKjlvoXlrprns7vmlbDms5XmsYLlvpfmipvniannur/nmoTop6PmnpDlvI88L3A+
- 提示2:PHA+6aaW5YWI5rGC5b6X54K5Q+eahOWdkOagh++8jOWIqeeUqOS4ieinkuWHveaVsOaxguW+l+KIoEFDQueahOW6puaVsO+8jOWIhuW9k+eCuVHlnKh46L205LiK5pa55pe25LiO5b2T54K5UeWcqHjovbTkuIvmlrnml7bmsYLop6PljbPlj6/vvIzms6jmhI/opoHmo4DpqozmmK/lkKbmiYDlvpfnu5PmnpznrKblkIjpopjmhI88L3A+
- 答案:Qw==
PGRpdj7op6PvvJriiLXlr7nnp7DovbTkuLrnm7Tnur94PTTvvIzlm77osaHlnKh46L205LiK5oiq5b6X55qE57q/5q616ZW/5Li6Nu+8jDxicj7iiLRB77yIMe+8jDDvvInjgIFC77yIN++8jDDvvInvvJs8YnI+6K6+5LqM5qyh5Ye95pWw55qE6Kej5p6Q5byP5Li677yaeT1h77yIeC1o77yJPHN1cD4yPC9zdXA+K2vvvIw8YnI+4oi16aG254K5Q+eahOaoquWdkOagh+S4ujTvvIzkuJTov4fngrk8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTUxUMkhidUFBQUNZVmt5TDFjMTk5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RS9yQkFDRkZNTVZNTFQySGJ1QUFBQ1lWa3lMMWMxOTkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNjgiPu+8iTwvZGl2PjxkaXY+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzVFL3JCQUNGRk1NVk1MeVRiTVNBQUFFM0NYQlNUVTMyNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTUx5VGJNU0FBQUUzQ1hCU1RVMzI3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjMwMSI+77yMPGJyPuWPiOKIteWvueensOi9tOS4uuebtOe6v3g9NO+8jOWbvuixoeWcqHjovbTkuIrmiKrlvpfnmoTnur/mrrXplb/kuLo277yMPGJyPuKItEHvvIgx77yMMO+8ie+8jELvvIg377yMMO+8ie+8jDxicj7iiLQwPTlhK2vikaHvvIw8YnI+55Sx4pGg4pGh6Kej5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVk1LU050Y1hBQUFDOVY0RVp6WTg0OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTUtTTnRjWEFBQUM5VjRFWnpZODQ4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEzMSI+PGJyPuKItOS6jOasoeWHveaVsOeahOino+aekOW8j+S4uu+8mjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZNTEFWdms1QUFBR05COFlCMEEzNTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVk1MQVZ2azVBQUFHTkI4WUIwQTM1NS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIzNTAiPjwvZGl2PjxkaXY+55Sx6Kej5p6Q5byP5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVFL3JCQUNGRk1NVk1LQjNDZjFBQUFDaURIZ3F2azUxOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTUtCM0NmMUFBQUNpREhncXZrNTE4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9Ijg1Ij48YnI+5Y+I4oi1QU09M++8jDxicj7iiLTlnKhSdOKWs0FNQ+S4re+8jDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZNTEFkVy02QUFBQzNpT1p3MVEwMjQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVk1MQWRXLTZBQUFDM2lPWncxUTAyNC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMTYiPiw8L2Rpdj48ZGl2PuKItOKIoEFDTT02MMKw77yMPGJyPuKItUFDPUJD77yMPGJyPuKItOKIoEFDQj0xMjDCsDxicj7ikaDlvZPngrlR5ZyoeOi9tOS4iuaWueaXtu+8jOi/h1HkvZxRTuKKpXjovbTkuo5O77yM5aaC5p6cQUI9QlHvvIw8YnI+55Sx4pazQUNC4oi94pazQUJR5pyJQlE9Nu+8jOKIoEFCUT3iiKBBQ0I9MTIwwrDvvIzliJniiKBRQk49NjDCsO+8jDxicj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTVBpbHdobUFBQUNQRlByUDVrNDYxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RS9yQkFDRkZNTVZNUGlsd2htQUFBQ1BGUHJQNWs0NjEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNzAiPu+8jEJOPTPvvIxPTj0xMO+8jOatpOaXtueCuTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZNT2lSVnZwQUFBQ2FqcUMwbkE0NjUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVk1PaVJWdnBBQUFDYWpxQzBuQTQ2NS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMTAiPu+8jOWmguaenEFCPUFR77yM55Sx5a+556ew5oCn55+lPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVFL3JCQUNGRk1NVk1QakhZSUVBQUFDZXgtZXpDazg4OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTVBqSFlJRUFBQUNleC1lekNrODg4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEwOSI+PC9kaXY+PGRpdj7ikaHlvZPngrlR5ZyoeOi9tOS4i+aWueaXtu+8jOKWs1FBQuWwseaYr+KWs0FDQu+8jOatpOaXtueCuVHnmoTlnZDmoIfmmK88aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTVBTaWpDM0FBQUNORDJJNkowODAwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RS9yQkFDRkZNTVZNUFNpakMzQUFBQ05EMkk2SjA4MDAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iODMiPjwvZGl2PjxkaXY+57uP5qOA6aqM77yM54K5PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVk1TeTRCaGhBQUFDUzFtSGIxRTQyNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTVN5NEJoaEFBQUNTMW1IYjFFNDI0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9Ijg5Ij7kuI48aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTVN4V0xEbEFBQUNQZ2d3cUNVMzM2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZNU3hXTERsQUFBQ1BnZ3dxQ1UzMzYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOTkiPumDveWcqOaKm+eJqee6v+S4iu+8jDxicj7nu7zkuIrmiYDov7DvvIznu4/pqozor4HvvJrlrZjlnKjov5nmoLfnmoTngrlR77yM5L2/4pazUUFC4oi94pazQUJD77yMPGJyPueCuVHnmoTlnZDmoIfkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUUvckJBQ0ZGTU1WTVNpcXJpaEFBQUNLRkdKLXg4MTk3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RS9yQkFDRkZNTVZNU2lxcmloQUFBQ0tGR0oteDgxOTcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTAwIj7miJY8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WTVN4V0xEbEFBQUNQZ2d3cUNVMzM2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZNU3hXTERsQUFBQ1BnZ3dxQ1UzMzYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOTkiPuaIljxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RS9yQkFDRkZNTVZNVGh6T3RvQUFBQ0NFTVY5Q3M0OTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzVFL3JCQUNGRk1NVk1UaHpPdG9BQUFDQ0VNVjlDczQ5MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMDEiPi48L2Rpdj48ZGl2PjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZNVENOMnhwQUFCSlZGNnQ4a00zMjQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVk1UQ04yeHBBQUJKVkY2dDhrTTMyNC5wbmciIGFsdD0i6Z2S5p6c5a2m6ZmiIiBoZWlnaHQ9IjE1OSIgd2lkdGg9IjIyOSI+PC9kaXY+
本课配套习题挑战模式5/5
在直角坐标系xoy中,抛物线y=x2-4x+3. 与x轴交于两点A、B,与y轴交于点C,其中A在B的左侧,B的坐标是(3,0). 将直线y=-x沿y轴向上平移3个单位长度后恰好经过点B、C. 设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,则点P的坐标为( ).
A: (2,3)或(2,-3) |
B: (2,2)或(2,-2). |
C: (2,4)或(2,-4). |
D: (2,5)或(2,-5). |
- 提示1:PHA+6aaW5YWI5rGC5Ye655u057q/QkPnmoTop6PmnpDlvI/kuLp5PS14KzM8L3A+
- 提示2:PHA+56Gu5a6a5oqb54mp57q/55qE5a+556ew6L20LiDlpoLmnpzorr7lr7nnp7DovbTkuqRCQ+S6jkXvvIzkuqR46L205LqORueCuS4g5qC55o2u5a+556ew6L2055qE6Kej5p6Q5byP5LiOQkPmiYDlnKjnm7Tnur/nmoTop6PmnpDlvI/kuI3pmr7lvpflh7pF54K555qE5Z2Q5qCH5Li677yIMu+8jDHvvInvvIzmraTml7ZBRj1GRT1GQu+8jOWmguaenOi/nuaOpUFF77yM6YKj5LmI5LiJ6KeS5b2iQUVC5bCx5piv5Liq562J6IWw55u06KeS5LiJ6KeS5b2iLiDkuo7mmK/kuInop5LlvaJBRUPkuZ/mmK/nm7Top5LkuInop5LlvaLvvIzpgqPkuYjiiKBBQ0XlkoziiKBBUEbnmoTmraPliIflgLzlsLHlupTor6Xnm7jnrYnvvIjlt7Lnn6XiiKBBQ0U94oigQVBE77yJ77yM6YKj5LmI5Y+v5b6X5Ye655qE562J6YeP5YWz57O75Li6QUXvvJpDRT1BRu+8mlBG77yM5o2u5q2k5Y+v5rGC5Ye6UEbnmoTplb/vvIzkuZ/lsLHog73lvpflh7pQ54K555qE5Z2Q5qCHPC9wPg==
- 提示3:PHA+5Lmf5Y+v5Lul5Yip55SoPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVktYZ0JXOVhBQUFDTFZSNUtOTTE5NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WS1hnQlc5WEFBQUNMVlI1S05NMTk1LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjEwNCI+LuW+lyA8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WS1hqX01wVkFBQUIta25tbFdRNzU5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZLWGpfTXBWQUFBQi1rbm1sV1E3NTkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNTIiPu+8jOehruWumlDngrnnmoTlnZDmoIc8L3A+
- 答案:Qg==
PGRpdj7op6PvvJrnlLEgeT14PHN1cD4yPC9zdXA+LTR4KzPlvpdE77yIMu+8jC0x77yJ77yM6K6+5a+556ew6L205LiOeOi9tOS6pOS6jueCuUbvvIzkuI5CQ+S6pOS6jkXvvIzlj6/lvpdF77yIMu+8jDHvvInvvIw8L2Rpdj48ZGl2Pui/nuaOpUFFLiDiiLVBRj1GQj1GRT0xLuKItEFF4oqlQ0XvvIzkuJQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WS2F5MzZSYUFBQUI4SFFyV3dJNzg2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZLYXkzNlJhQUFBQjhIUXJXd0k3ODYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNTkiPu+8jDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZLYWd6cUVZQUFBQlVsekFEbEk1OTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVkthZ3pxRVlBQUFCVWx6QURsSTU5NC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIzNSI+MjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy80Qi9yQkFDRTFNTVZLYWlIUmYyQUFBQmV3amhOLUE1MTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVkthaUhSZjJBQUFCZXdqaE4tQTUxMi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOSI+77yI5oiW5YWI5L2c5Z6C57q/QUXiiqVCQ++8jOWGjeiuoeeul+S5n+WPr++8iTwvZGl2PjxkaXY+5ZyoUnTilrNBRlDkuI5SdOKWs0FFQ+S4re+8jDwvZGl2PjxkaXY+4oi14oigQUNFPeKIoEFQRe+8iOW3suefpe+8ie+8jCDiiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvNUQvckJBQ0ZGTU1WS2JDb3hrSkFBQUNIRUYxc0FzNzkyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZLYkNveGtKQUFBQ0hFRjFzQXM3OTIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNTkiPuWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC81RC9yQkFDRkZNTVZLYXdfbndLQUFBQ09pbGRiaWsxMDQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzVEL3JCQUNGRk1NVkthd19ud0tBQUFDT2lsZGJpazEwNC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI2NSI+4oi0UEY9Mi48L2Rpdj48ZGl2PuKItOeCuVDnmoTlnZDmoIfkuLrvvIgy77yMMu+8ieaIlu+8iDLvvIwtMu+8iTwvZGl2PjxkaXY+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzRCL3JCQUNFMU1NVktiaDVfV3pBQUEwTmdpT3BkRTU3My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvNEIvckJBQ0UxTU1WS2JoNV9XekFBQTBOZ2lPcGRFNTczLnBuZyIgaGVpZ2h0PSIyMDMiIHdpZHRoPSIyMjUiPjwvZGl2Pg==