本课配套习题挑战模式1/3
单选题
难度系数:
1.
函数()的图象向左平移个单位后,得到函数的图象,则的解析式为( )
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+5bem5Yqg5Y+z5YeP77yM5Y+Y5o2i5ous5Y+35YaF5a65PC9wPg==
- 提示2:PHA+6K+x5a+85YWs5byP5YyW566APC9wPg==
- 答案:QQ==
PHA+6Kej77ya55SxPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0I4LzU3L3JCQUNGRlRaVkRpRGcyaWxBQUFCMFE0ekdsYzUzNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQjgvNTcvckJBQ0ZGVFpWRGlEZzJpbEFBQUIwUTR6R2xjNTM2LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjU1Ij4oPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzdCL0M4L3JCQUNFMVRaVkRteUFaLWlBQUFCZ0lFc0hGMDk4MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvN0IvQzgvckJBQ0UxVFpWRG15QVotaUFBQUJnSUVzSEYwOTgwLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjM0Ij4p55qE5Zu+6LGh5ZCR5bem5bmz56e7PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzE1L3JCQUNKbFRaVkRuaWFWM2RBQUFCTFIxRkNzazA0Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvMTUvckJBQ0psVFpWRG5pYVYzZEFBQUJMUjFGQ3NrMDQ2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjkiPuS4quWNleS9jeW+lyw8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNTgvckJBQ0oxVFpWRG56T3hNWEFBQUVjWmNWWDRBNDgzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny81OC9yQkFDSjFUWlZEbnpPeE1YQUFBRWNaY1ZYNEE0ODMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjY1Ij48YnI+PC9wPg==
本课配套习题挑战模式2/3
单选题
难度系数:
2.
函数的部分图象如图所示,则函数表达式为()
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+5qC55o2u5pyA6auY54K55pyA5L2O54K55rGCPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzE1L3JCQUNKbFRaVkR5UUxjNmVBQUFCTXBhbUMyYzAwMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvMTUvckJBQ0psVFpWRHlRTGM2ZUFBQUJNcGFtQzJjMDAzLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjkiPjwvcD4=
- 提示2:PHA+57uT5ZCI5Zu+5YOP77yM5Luj5YWl54K55rGC5YC8PC9wPg==
- 答案:QQ==
PHA+6Kej77ya5qC55o2u5pyA6auY54K55LiO5pyA5L2O54K555qE5YC855+l77yaaz0x77yM5YaN57uT5ZCI5Zu+5YOP5b6X77yaPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQiPjI8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNSI+z4k8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNyI+Kzwvc3Bhbj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI4Ij7PhjwvdmFyPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxMCI+PTwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxMSI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMiI+PHNwYW4gY2xhc3M9Im5vblN5bWJvbGEiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNiI+z4A8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMyI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE1Ij4yPC9zcGFuPjwvc3Bhbj48c3BhbiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7d2lkdGg6MCI+Jm5ic3A7PC9zcGFuPjwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTciPu+8jDwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxOCI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxOSI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIzIj4xPC9zcGFuPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyNCI+Mzwvc3Bhbj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyNSI+z4k8L3Zhcj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjIwIj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjIiPjI8L3NwYW4+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyNyI+Kzwvc3Bhbj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyOCI+z4Y8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzAiPj08L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjMxIj4yPC9zcGFuPjxzcGFuIGNsYXNzPSJub25TeW1ib2xhIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzIiPs+APC9zcGFuPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIzMyI+77yMPC9zcGFuPjwvc3Bhbj48c3Bhbj48L3NwYW4+6Kej5b6X77yaPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzQiPs+JPC92YXI+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjM2Ij49PC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjM3Ij48c3BhbiBjbGFzcz0ibnVtZXJhdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjM4Ij48c3BhbiBjbGFzcz0ibm9uU3ltYm9sYSIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQyIj7PgDwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjM5Ij48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNDEiPjM8L3NwYW4+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI0MyI+77yMPC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQ0Ij7PhjwvdmFyPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI0NiI+PTwvc3Bhbj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNDciPuKIkjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI0OCI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSI0OSI+PHNwYW4gY2xhc3M9Im5vblN5bWJvbGEiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI1MyI+z4A8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSI1MCI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjUyIj42PC9zcGFuPjwvc3Bhbj48c3BhbiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7d2lkdGg6MCI+Jm5ic3A7PC9zcGFuPjwvc3Bhbj48L3NwYW4+PHNwYW4+Jm5ic3A7PC9zcGFuPjxicj48L3A+
本课配套习题挑战模式3/3
单选题
难度系数:
3.
给定性质:
①最小正周期为,
②图象关于直线对称,则下列四个函数中,同时具有性质①②的是()
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+5YWI5Yik5pat5ZGo5pyf5oCn55qE5ruh6Laz5oOF5Ya1PC9wPg==
- 提示2:PHA+5YaN55yL5a+556ewPC9wPg==
- 答案:RA==
PHA+6Kej77ya6YCJ6aG5QeS4reWHveaVsOeahOWRqOacn+S4ujxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQiPjxzcGFuIGNsYXNzPSJudW1lcmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iNSI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjgiPjI8L3NwYW4+PHNwYW4gY2xhc3M9Im5vblN5bWJvbGEiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI5Ij7PgDwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjYiPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEwIj48c3BhbiBjbGFzcz0ibnVtZXJhdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjExIj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTUiPjE8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMiI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE0Ij4yPC9zcGFuPjwvc3Bhbj48c3BhbiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7d2lkdGg6MCI+Jm5ic3A7PC9zcGFuPjwvc3Bhbj48L3NwYW4+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiPiZuYnNwOzwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE2Ij49PC9zcGFuPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNyI+NDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uU3ltYm9sYSIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE4Ij7PgDwvc3Bhbj48L3NwYW4+PHNwYW4+Jm5ic3A7PC9zcGFuPu+8jOmAiemhuULkuK3lh73mlbDnmoTlkajmnJ/mmK88c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxOSI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIyMCI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIzIj4yPC9zcGFuPjxzcGFuIGNsYXNzPSJub25TeW1ib2xhIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjQiPs+APC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iZGVub21pbmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMjEiPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyNSI+Mjwvc3Bhbj48L3NwYW4+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiPiZuYnNwOzwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE2Ij49PC9zcGFuPjxzcGFuIGNsYXNzPSJub25TeW1ib2xhIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTgiPs+APC9zcGFuPjwvc3Bhbj48c3Bhbj4gPC9zcGFuPu+8jOmAiemhuUPkuK3lh73mlbDnmoTlkajmnJ/mmK88c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uU3ltYm9sYSIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjI2Ij7PgDwvc3Bhbj48L3NwYW4+PHNwYW4+IDwvc3Bhbj7vvIzpgInpoblE5Lit55qE5ZGo5pyf5pivPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gY2xhc3M9ImZyYWN0aW9uIG5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjciPjxzcGFuIGNsYXNzPSJudW1lcmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMjgiPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIzMSI+Mjwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uU3ltYm9sYSIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjMyIj7PgDwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjI5Ij48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzMiPjI8L3NwYW4+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIzNCI+PTwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uU3ltYm9sYSIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjM1Ij7PgDwvc3Bhbj48L3NwYW4+PHNwYW4+IDwvc3Bhbj7vvIzlho3nu5PlkIjlr7nnp7DmgKfnn6Xlj6rmnIlE5piv5q2j56Gu562U5qGILjxicj48L3A+