本课配套习题挑战模式1/4
单选题
难度系数:
1.
已知二面角的大小为,为异面直线,且,则所成的角为( )
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+55S75Ye65Zu+5b2i5YiG5p6QPC9wPg==
- 提示2:PHA+5byC6Z2i55u057q/5omA5oiQ55qE6KeS55qE6IyD5Zu0PC9wPg==
- 答案:Qg==
PHA+6Kej5p6Q77yaPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJEL3JCQUNGRlRJbmdXZ0x2ODNBQUFCalNJV3pJVTc4NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkQvckJBQ0ZGVEluZ1dnTHY4M0FBQUJqU0lXeklVNzg0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjM5Ij7miYDmiJDnmoTop5LkuI7kuozpnaLop5Lnm7jnrYnmiJbkupLooaXvvIzlm6DkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkQvckJBQ0ZGVEluZ1dnTHY4M0FBQUJqU0lXeklVNzg0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yRC9yQkFDRkZUSW5nV2dMdjgzQUFBQmpTSVd6SVU3ODQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMzkiPuaJgOaIkOeahOinkueahOiMg+WbtOS4ujxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BRC9yQkFDSmxUSW5nV1FsRTF2QUFBQjFxekthSkk1NDkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmdXUWxFMXZBQUFCMXF6S2FKSTU0OS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI1NyI+LOW5tuS4lOS6jOmdouinkjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yMS9yQkFDRTFUSW5nV0N2c3hEQUFBQnNOYVFQWTQ2OTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzIxL3JCQUNFMVRJbmdXQ3ZzeERBQUFCc05hUVBZNDY5MS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI2MiI+55qE5aSn5bCP5Li6NjDCsCzmiYDku6U8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkQvckJBQ0ZGVEluZ1dnTHY4M0FBQUJqU0lXeklVNzg0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yRC9yQkFDRkZUSW5nV2dMdjgzQUFBQmpTSVd6SVU3ODQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMzkiPuaJgOaIkOeahOinkuS4ujYwwrAuPGJyPjwvcD4=
本课配套习题挑战模式2/4
单选题
难度系数:
2.
四棱锥中,底面是边长为2的正方形,其他四个侧面是侧棱长为3的等腰三角形,则二面角的余弦值的大小为( )
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+55S75Zu+5YiG5p6QPC9wPg==
- 提示2:PHA+5L2Z5bym5a6a55CGPC9wPg==
- 答案:Qg==
PHA+6Kej5p6Q77ya5aaC5Zu+77yM5Y+WPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0FBLzJEL3JCQUNGRlRJbmctRGgwU0RBQUFCakEyVzZpdzgwOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkQvckJBQ0ZGVEluZy1EaDBTREFBQUJqQTJXNml3ODA4LnBuZyIgaGVpZ2h0PSIxNyIgd2lkdGg9IjI3Ij7kuK3ngrk8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRUMvckJBQ0oxVEluZ193ekRQbEFBQUJQdHdNQ25ZOTg1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQy9yQkFDSjFUSW5nX3d6RFBsQUFBQlB0d01Dblk5ODUucG5nIiBoZWlnaHQ9IjE3IiB3aWR0aD0iMTYiPu+8jOi/hzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BRC9yQkFDSmxUSW5nLVQ2T3d6QUFBQlFZSmwxTlE0MjMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmctVDZPd3pBQUFCUVlKbDFOUTQyMy5wbmciIGhlaWdodD0iMTkiIHdpZHRoPSIxNiI+5L2c5bqV6Z2i55qE5Z6C57q/77yM5Z6C6Laz5Li6PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzIxL3JCQUNFMVRJbmdfeGN4VmZBQUFCSkJLZkI1RTI1My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMjEvckJBQ0UxVEluZ194Y3hWZkFBQUJKQktmQjVFMjUzLnBuZyIgaGVpZ2h0PSIxOSIgd2lkdGg9IjE2Ij7vvIzov57mjqU8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkQvckJBQ0ZGVEluZy1EZnA5VUFBQUJqRkZsamdjMDU2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BQS8yRC9yQkFDRkZUSW5nLURmcDlVQUFBQmpGRmxqZ2MwNTYucG5nIiBoZWlnaHQ9IjE5IiB3aWR0aD0iMjciPu+8jOagueaNrumimOaEj+WPr+efpe+8jDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BRC9yQkFDSmxUSW5nLUF4VGl3QUFBQ0VLS1BFNHc1NzYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmctQXhUaXdBQUFDRUtLUEU0dzU3Ni5wbmciIGhlaWdodD0iMTkiIHdpZHRoPSI0NyI+55qE5aSn5bCP5bCx5piv5LqM6Z2i6KeSPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VDL3JCQUNKMVRJbmdfQ2pTTWVBQUFDVDJMdkNhODE2MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRUMvckJBQ0oxVEluZ19DalNNZUFBQUNUMkx2Q2E4MTYxLnBuZyIgaGVpZ2h0PSIxOSIgd2lkdGg9Ijc2Ij7nmoTlpKflsI/vvIzlm6DkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRUMvckJBQ0oxVEluZ19UQ29PMkFBQUJ2eXIxUkowNzgzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQy9yQkFDSjFUSW5nX1RDb08yQUFBQnZ5cjFSSjA3ODMucG5nIiBoZWlnaHQ9IjE5IiB3aWR0aD0iNDgiPu+8jDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yMS9yQkFDRTFUSW5nX3g4TGdJQUFBREdiN1Q5VFk1MDgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzIxL3JCQUNFMVRJbmdfeDhMZ0lBQUFER2I3VDlUWTUwOC5wbmciIGhlaWdodD0iMjciIHdpZHRoPSIxMzAiPizmiYDku6U8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkQvckJBQ0ZGVEluZy16aGRLZUFBQUZXRW4xZ3h3NTgxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yRC9yQkFDRkZUSW5nLXpoZEtlQUFBRldFbjFneHc1ODEucG5nIiBoZWlnaHQ9IjQ4IiB3aWR0aD0iMjA3Ij4s6YCJQi48YnI+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmhDamtDcXVBQUFWVXdxR29lazYyMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUQvckJBQ0psVEluaENqa0NxdUFBQVZVd3FHb2VrNjIzLnBuZyIgaGVpZ2h0PSIxNjUiIHdpZHRoPSIyNTIiPjxicj48L3A+
本课配套习题挑战模式3/4
单选题
难度系数:
3.
过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是( )
A: 30° |
B: 45° |
C: 60° |
D: 90° |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+5p6E6YCg5q2j5pa55L2T77yM55S75Ye65Zu+5b2iPC9wPg==
- 提示2:PHA+5om+5Ye65LqM6Z2i6KeS55qE5bmz6Z2i6KeSPC9wPg==
- 提示3:PHA+6Kej5LiJ6KeS5b2iPC9wPg==
- 答案:Qg==
PHA+6Kej5p6Q77ya5oiR5Lus5p6E6YCg5q2j5pa55L2TQUJDRC1QUVJT5aaC5LiL5Zu+56S677yaPGJyPjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQy9yQkFDSjFUSW5oYUNKQnNXQUFBSnozWTQwckk4ODMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VDL3JCQUNKMVRJbmhhQ0pCc1dBQUFKejNZNDBySTg4My5wbmciIGhlaWdodD0iMTM0IiB3aWR0aD0iMTYyIj48YnI+4oi06Z2iUFFDROS4jumdolBRQkHmiYDmiJDkuozpnaLop5LlsLHmmK/lubPpnaJBQlDkuI7lubPpnaJDRFDmiYDmiJDkuozpnaLop5I8YnI+5Zug5Li6UEHiiqXlubPpnaJBQkNE77yM5omA5LulUEHiiqVBQjxicj5QUeKIpUFC77yM5omA5LulUEHiiqVQUTxicj5QUeKIpUNE77yM5omA5LulUETiiqVQUTxicj7miYDku6XiiKBBUETlsLHmmK/pnaJQRUNE5LiO6Z2iUEVCQeaJgOaIkOS6jOmdouinkjxicj7nlLHkuo7mnoTpgKDnmoTlh6DkvZXkvZPmmK/kuIDkuKrmraPmlrnkvZPvvIzmmJPlvpfiiKBBUEQ9NDXCsDxicj7mlYXpgIlCPGJyPjwvcD4=
本课配套习题挑战模式4/4
单选题
难度系数:
4.
正三棱柱的底面边长为3,侧棱,则二面角的大小是( )
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+56m66Ze05ZCR6YeP5rOVPC9wPg==
- 提示2:PHA+5bu656uL5ZCI6YCC55qE56m66Ze055u06KeS5Z2Q5qCH57O7PC9wPg==
- 提示3:PHA+5rGC5Ye65bmz6Z2i55qE5rOV5ZCR6YePPC9wPg==
- 提示4:PHA+6K6h566X5rOV5ZCR6YeP55qE5aS56KeSPC9wPg==
- 答案:QQ==
PHA+6Kej77ya5Y+WQkPnmoTkuK3ngrlP77yM6L+eQU/vvI7nlLHpopjmhI/lubPpnaI8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMjEvckJBQ0UxVEluaTJ4LXBVZUFBQUI4TnloMjg0NzU5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yMS9yQkFDRTFUSW5pMngtcFVlQUFBQjhOeWgyODQ3NTkucG5nIiBoZWlnaHQ9IjE5IiB3aWR0aD0iNTIiPuW5s+mdojxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQy9yQkFDSjFUSW5pMnl2Vmo4QUFBQl9ESzhKSG82ODEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VDL3JCQUNKMVRJbmkyeXZWajhBQUFCX0RLOEpIbzY4MS5wbmciIGhlaWdodD0iMjMiIHdpZHRoPSI1NSI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzIxL3JCQUNFMVRJbmkyd2hYWXVBQUFDTlEteXp4QTYxMi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMjEvckJBQ0UxVEluaTJ3aFhZdUFBQUNOUS15enhBNjEyLnBuZyIgaGVpZ2h0PSIxOSIgd2lkdGg9IjY4Ij7vvIw8YnI+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJFL3JCQUNGRlRJbmkzekJXNUlBQUFCbkhNOGxTQTg5Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkUvckJBQ0ZGVEluaTN6Qlc1SUFBQUJuSE04bFNBODk3LnBuZyIgaGVpZ2h0PSIxOSIgd2lkdGg9IjQzIj7lubPpnaI8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRUMvckJBQ0oxVEluaTJ5dlZqOEFBQUJfREs4SkhvNjgxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQy9yQkFDSjFUSW5pMnl2Vmo4QUFBQl9ESzhKSG82ODEucG5nIiBoZWlnaHQ9IjIzIiB3aWR0aD0iNTUiPu+8jOS7pU/kuLrljp/ngrnvvIzlu7rnq4vmiYDnpLrnqbrpl7Tnm7Top5LlnZDmoIfns7vvvIw8YnI+5YiZIDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yRS9yQkFDRkZUSW5pMnk5WFlLQUFBQy0wcU9RY3MxMDMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJFL3JCQUNGRlRJbmkyeTlYWUtBQUFDLTBxT1FjczEwMy5wbmciIGhlaWdodD0iNDEiIHdpZHRoPSI5MiI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmkyVFR6WUFBQUFDbklvX1BFSTkxOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUQvckJBQ0psVEluaTJUVHpZQUFBQUNuSW9fUEVJOTE4LnBuZyIgaGVpZ2h0PSI0MSIgd2lkdGg9IjczIj7vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUQvckJBQ0psVEluaTJ4OWxheEFBQUNwQmxYRHhFMjUzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BRC9yQkFDSmxUSW5pMng5bGF4QUFBQ3BCbFhEeEUyNTMucG5nIiBoZWlnaHQ9IjQxIiB3aWR0aD0iNzUiPu+8jDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQy9yQkFDSjFUSW5pMmllV0tMQUFBREVyYVJXQ2szNTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VDL3JCQUNKMVRJbmkyaWVXS0xBQUFERXJhUldDazM1NC5wbmciIGhlaWdodD0iNDEiIHdpZHRoPSI5MyI+77yMPGJyPuKItCA8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMjEvckJBQ0UxVEluaTZEcFRKLUFBQUR0UWVYaU9jNzQ3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yMS9yQkFDRTFUSW5pNkRwVEotQUFBRHRRZVhpT2M3NDcucG5nIiBoZWlnaHQ9IjQxIiB3aWR0aD0iMTI4Ij7vvIwgPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VDL3JCQUNKMVRJbmk2VFVnRFJBQUFEYzVRN3k2MDU4Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRUMvckJBQ0oxVEluaTZUVWdEUkFBQURjNVE3eTYwNTg3LnBuZyIgaGVpZ2h0PSI0MSIgd2lkdGg9IjEyNSI+77yMIDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yMS9yQkFDRTFUSW5pNkJkNld5QUFBRFBSYldJSkk1NTMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzIxL3JCQUNFMVRJbmk2QmQ2V3lBQUFEUFJiV0lKSTU1My5wbmciIGhlaWdodD0iNDEiIHdpZHRoPSIxMTUiPu+8jDxicj7nlLHpopjmhI88aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkUvckJBQ0ZGVEluaTZBOWlKMEFBQUJta0JYVHF3OTc2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yRS9yQkFDRkZUSW5pNkE5aUowQUFBQm1rQlhUcXc5NzYucG5nIiBoZWlnaHQ9IjI3IiB3aWR0aD0iNDQiPuS4uuW5s+mdokFCROeahOazleWQkemHj++8jjxicj7orr4g5bmz6Z2iPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJFL3JCQUNGRlRJbmk2UjlzVEVBQUFCOXpaNWpqTTMwMS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkUvckJBQ0ZGVEluaTZSOXNURUFBQUI5elo1ampNMzAxLnBuZyIgaGVpZ2h0PSIyMyIgd2lkdGg9IjQzIj7nmoTms5XlkJHph4/kuLogPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmk2eFAxR1JBQUFDclFjbmZtNDE4Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUQvckJBQ0psVEluaTZ4UDFHUkFBQUNyUWNuZm00MTg3LnBuZyIgaGVpZ2h0PSIyNyIgd2lkdGg9Ijg0Ij7vvIw8YnI+5YiZIDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BRC9yQkFDSmxUSW5pN2hFMEN0QUFBRHZ0Nm94aEU0MDkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmk3aEUwQ3RBQUFEdnQ2b3hoRTQwOS5wbmciIGhlaWdodD0iNTMiIHdpZHRoPSI3MyI+77yM4oi0IDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQy9yQkFDSjFUSW5pN3p1di13QUFBRDZ1T3JmdnczMTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VDL3JCQUNKMVRJbmk3enV2LXdBQUFENnVPcmZ2dzMxNC5wbmciIGhlaWdodD0iNTMiIHdpZHRoPSI4OCI+77yM4oi0IDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yMS9yQkFDRTFUSW5pN3hWYklaQUFBRldCdUNtcms5MjcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzIxL3JCQUNFMVRJbmk3eFZiSVpBQUFGV0J1Q21yazkyNy5wbmciIGhlaWdodD0iODMiIHdpZHRoPSIxMTIiPu+8jDxicj7ljbMgPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJFL3JCQUNGRlRJbmk3eFpCSGJBQUFENkdDSi12NDE1MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkUvckJBQ0ZGVEluaTd4WkJIYkFBQUQ2R0NKLXY0MTUwLnBuZyIgaGVpZ2h0PSI2NyIgd2lkdGg9Ijc3Ij7vvIw8YnI+55SxPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VDL3JCQUNKMVRJbmk3RDZWS1JBQUFINTlPOFRIYzY4NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRUMvckJBQ0oxVEluaTdENlZLUkFBQUg1OU84VEhjNjg0LnBuZyIgaGVpZ2h0PSI4MCIgd2lkdGg9IjI4OSI+77yMPGJyPuW+lzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BRC9yQkFDSmxUSW5pNkQtS2R2QUFBQ19RTXk1OUk1NzAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FEL3JCQUNKbFRJbmk2RC1LZHZBQUFDX1FNeTU5STU3MC5wbmciIGhlaWdodD0iMjciIHdpZHRoPSIxMDkiPueahOWkp+Wwj+S4ujxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yMS9yQkFDRTFUSW5pNkNsX1FkQUFBQmZYNkdOSG84MzUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzIxL3JCQUNFMVRJbmk2Q2xfUWRBQUFCZlg2R05IbzgzNS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIyNSI+77yO5pWF6YCJQeOAgjxicj48L3A+