本课配套习题挑战模式1/3
单选题
难度系数:
1.根据单调性的定义,函数在区间上是( )
A: 增函数 |
B: 减函数 |
C: 既不是增函数也不是减函数 |
D: 无法判断 |
一次做对,真牛!
+5奖励规则>
- 提示1:IDxpbWcgd2lkdGg9Mjc2IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGLzc1L3JCQUNGRlBySFdYVGdKRmVBQUFFMjBCR081MDMzOS5wbmciPg==
- 提示2:IDxpbWcgd2lkdGg9Mjg0IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFdXUTZjNEJBQUFFc2ttU2ZHYzAxNi5wbmciPg==
- 提示3:IDxpbWcgd2lkdGg9MjIyIGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFdYQUZsQXFBQUFFWUNsMjNsYzE0Ny5wbmciPg==
- 答案:QQ==
6Kej5p6Q77ya5Y+W5YC877ya5Lu75Y+WPGltZyB3aWR0aD0xMTAgaGVpZ2h0PTIxIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzUvckJBQ0ZGUHJIV1hTSTB6VEFBQUNNV0w3TjNBODI4LnBuZyI+77yM5LiUPGltZyB3aWR0aD00NSBoZWlnaHQ9MjEgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS81RS9yQkFDRTFQckhXWFRGSE42QUFBQmh4OExseVU3MjMucG5nIj7vvIzkvZzlt67vvJo8aW1nIHdpZHRoPTE2NiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83NS9yQkFDRkZQckhXYlRSOFVUQUFBRE5WTm5rLVk0MDcucG5nIj7vvIw8YnI+5Y+Y5b2i77yaPGltZyB3aWR0aD00MjAgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzUvckJBQ0ZGUHJIV2FSZzlDbEFBQUZqd1BNc2owNzMxLnBuZyI+77yMPGJyPuWumuWPt++8muKItTxpbWcgd2lkdGg9MTA4IGhlaWdodD0yMSBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFcyeXNWRzBBQUFCNExJXzlZMDQyMy5wbmciPu+8jOKItDxpbWcgd2lkdGg9MjQwIGhlaWdodD0yMSBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFczUzdieDdBQUFDbjJLN0wtYzA2NS5wbmciPuKItDxpbWcgd2lkdGg9OTEgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzYvckJBQ0ZGUHJIVzNSa2RnR0FBQUNySFRPckwwNDg2LnBuZyI+77yM5Y2zPGltZyB3aWR0aD0xMjMgaGVpZ2h0PTIxIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUUvckJBQ0UxUHJIVzJnbmdXcUFBQUNWUHNVU1AwMDkxLnBuZyI+4oi0PGltZyB3aWR0aD04NSBoZWlnaHQ9MjEgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri83Ni9yQkFDRkZQckhXMnluQ29hQUFBQ0ZWRUxDbXc0OTUucG5nIj7vvIziiLU8aW1nIHdpZHRoPTQ1IGhlaWdodD0yMSBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFdYVEZITjZBQUFCaHg4TGx5VTcyMy5wbmciPu+8jOe7k+iuuu+8muKItOWHveaVsDxpbWcgd2lkdGg9NjUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUUvckJBQ0UxUHJIVzNBbnlxZEFBQUNSb0JuWWFFMTQ3LnBuZyI+5Zyo5Yy66Ze0PGltZyB3aWR0aD00MCBoZWlnaHQ9MjEgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri83NS9yQkFDRkZQckhXV2k3YXhjQUFBQmIwR1V0Ymc1NDIucG5nIj7kuIrmmK/lop7lh73mlbDvvIzmlYXpgIlB
本课配套习题挑战模式2/3
单选题
难度系数:
2.
根据单调性的定义,函数在上的单调性是( )
A: 单调递增 |
B: 单调递减 |
C: 既不单增也不单减 |
D: 无法判断 |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzc2L3JCQUNGRlBySFpyZ0ZteHFBQUFFZEdvcGxRazY5MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzYvckJBQ0ZGUHJIWnJnRm14cUFBQUVkR29wbFFrNjkxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjM0MyI+PC9wPg==
- 提示2:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzc2L3JCQUNGRlBySFpxUlRreDhBQUFFdFJ6dXhBczU4MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzYvckJBQ0ZGUHJIWnFSVGt4OEFBQUV0Unp1eEFzNTgxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjQwMCI+PC9wPg==
- 提示3:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFpyenZGWDdBQUFFUzR1X002bzIxNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUUvckJBQ0UxUHJIWnJ6dkZYN0FBQUVTNHVfTTZvMjE3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjMyNiI+PC9wPg==
- 答案:Qg==
PHA+6Kej5p6Q77ya5Y+W5YC877ya5Lu75Y+WPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzc3L3JCQUNGRlBySFpxd3FnN0RBQUFDYUNZS1B2MDQ4OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzcvckJBQ0ZGUHJIWnF3cWc3REFBQUNhQ1lLUHYwNDg4LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjEzMSI+77yM5LiUPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFdYVEZITjZBQUFCaHg4TGx5VTcyMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUUvckJBQ0UxUHJIV1hURkhONkFBQUJoeDhMbHlVNzIzLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjQ1Ij7vvIzkvZzlt67vvJo8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUUvckJBQ0UxUHJIWnVqVWNUUkFBQURYLUI1WkFZMTQ3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9DOS81RS9yQkFDRTFQckhadWpVY1RSQUFBRFgtQjVaQVkxNDcucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMjgyIj7vvIzlj5jlvaLvvJo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUYvckJBQ0UxUHJIWnVDeUkxNEFBQUd0U19lMjdJNzM3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS81Ri9yQkFDRTFQckhadUN5STE0QUFBR3RTX2UyN0k3MzcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNTU0Ij7vvIw8YnI+5a6a5Y+377ya4oi1PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzc3L3JCQUNGRlBySFp1QXRFczVBQUFCd2hkcUJNZzI0Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzcvckJBQ0ZGUHJIWnVBdEVzNUFBQUJ3aGRxQk1nMjQyLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjgyIj7vvIziiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUYvckJBQ0UxUHJIWnZBMnQ2cUFBQUJ5bGdrbzZNMzAyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS81Ri9yQkFDRTFQckhadkEydDZxQUFBQnlsZ2tvNk0zMDIucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNzAiPu+8jDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83Ny9yQkFDRkZQckhadnlKeVFxQUFBQ0ZFUW8zUVk0MTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzc3L3JCQUNGRlBySFp2eUp5UXFBQUFDRkVRbzNRWTQxNC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI5NCI+77yM4oi0PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzc3L3JCQUNGRlBySFp2VGZJOUdBQUFDMG51aWJiNDgwMS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzcvckJBQ0ZGUHJIWnZUZkk5R0FBQUMwbnVpYmI0ODAxLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjE2OSI+PGJyPuWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS81Ri9yQkFDRTFQckhadUJ1Y0FXQUFBQ1RIQ2RwUDAzMTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzVGL3JCQUNFMVBySFp1QnVjQVdBQUFDVEhDZHBQMDMxNS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIxMDkiPu+8jDxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjx2YXIgY2xhc3M9ImZsb3JpbiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQiPsaSPC92YXI+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI0Ij4mbmJzcDs8L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNSI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMS4wNiwgMS4zNjUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iNiI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNyI+eDwvdmFyPjxzdWIgY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iOSIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMCI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEzIj4xPC9zcGFuPjwvc3ViPjwvc3Bhbj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLjA2LCAxLjM2NSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4pPC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTQiPiZndDs8L3NwYW4+PHZhciBjbGFzcz0iZmxvcmluIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTYiPsaSPC92YXI+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNiI+Jm5ic3A7PC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE3Ij48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLjA2LCAxLjM2NSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4oPC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxOCI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTkiPng8L3Zhcj48c3ViIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIxIiBtYXRocXVpbGwtYmxvY2staWQ9IjIyIj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjQiPjI8L3NwYW4+PC9zdWI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEuMDYsIDEuMzY1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPik8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+77yM4oi1PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzVFL3JCQUNFMVBySFdYVEZITjZBQUFCaHg4TGx5VTcyMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUUvckJBQ0UxUHJIV1hURkhONkFBQUJoeDhMbHlVNzIzLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjQ1Ij7vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvNzYvckJBQ0ZGUHJIWDdnT1Z4TkFBQUNUQS1IM0pZMDU2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83Ni9yQkFDRkZQckhYN2dPVnhOQUFBQ1RBLUgzSlkwNTYucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTExIj7lnKg8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNUUvckJBQ0UxUHJIWnF5UEduekFBQUJ0UmE1VjE0MzM3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9DOS81RS9yQkFDRTFQckhacXlQR256QUFBQnRSYTVWMTQzMzcucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNTciPuS4iuaYr+WNleiwg+mAkuWHj+WHveaVsO+8jOaVhemAiUI8YnI+PC9wPg==
本课配套习题挑战模式3/3
单选题
难度系数:
3.
函数在上的单调性是( )
A: 单调递增 |
B: 单调递减 |
C: 既不单增也不单减 |
D: 无法判断 |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzdCL3JCQUNGRlBySGxQeUNPVkxBQUFGOWgzdzZHYzA2NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvN0IvckJBQ0ZGUHJIbFB5Q09WTEFBQUY5aDN3NkdjMDY0LnBuZyIgaGVpZ2h0PSI2MiIgd2lkdGg9IjM3NyI+PC9wPg==
- 提示2:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzYyL3JCQUNFMVBySGxUU0JFZUFBQUFFdFdsYXNHWTI4NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNjIvckJBQ0UxUHJIbFRTQkVlQUFBQUV0V2xhc0dZMjg0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0MyI+PC9wPg==
- 提示3:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzdCL3JCQUNGRlBySGxTeTBFUVJBQUFFNFFBckZENDMyNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvN0IvckJBQ0ZGUHJIbFN5MEVRUkFBQUU0UUFyRkQ0MzI0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0MyI+PC9wPg==
- 答案:Qg==
PHA+6Kej5p6Q77yaPGJyPuWPluWAvO+8muS7u+WPljxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83Qi9yQkFDRkZQckhsU1JqM2dXQUFBQ08xMDRoVTA4MjQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzdCL3JCQUNGRlBySGxTUmozZ1dBQUFDTzEwNGhVMDgyNC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIxMDAiPu+8jOS4lDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS82Mi9yQkFDRTFQckhsU0NieFdUQUFBQmh4OExseVU0NjkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzYyL3JCQUNFMVBySGxTQ2J4V1RBQUFCaHg4TGx5VTQ2OS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI0NSI+77yMPGJyPuS9nOW3ru+8mjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83Qi9yQkFDRkZQckhsU0JkYVd0QUFBREtrbnlDbm8yODcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzdCL3JCQUNGRlBySGxTQmRhV3RBQUFES2tueUNubzI4Ny5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIyMjgiPu+8jDxicj7lj5jlvaLvvJo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvN0IvckJBQ0ZGUHJIbFNRM2F5UkFBQUhXREhMWmFFMDM2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83Qi9yQkFDRkZQckhsU1EzYXlSQUFBSFdESExaYUUwMzYucG5nIiBoZWlnaHQ9IjYyIiB3aWR0aD0iNTA5Ij48YnI+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzYyL3JCQUNFMVBySGxYUkFmN2ZBQUFFT0VtY2hQczY0My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNjIvckJBQ0UxUHJIbFhSQWY3ZkFBQUVPRW1jaFBzNjQzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI1OSI+77yMPGJyPuWumuWPt++8muKItTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83Qy9yQkFDRkZQckhsV0NESFFNQUFBQi1pZGRSUjgwMzgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzdDL3JCQUNGRlBySGxXQ0RIUU1BQUFCLWlkZFJSODAzOC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI5NyI+77yM4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGLzdDL3JCQUNGRlBySGxXeEIxRzFBQUFEa1RpT1dkSTg3NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvN0MvckJBQ0ZGUHJIbFd4QjFHMUFBQURrVGlPV2RJODc1LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjMyMCI+77yMPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS82Mi9yQkFDRTFQckhsWGdBNUpaQUFBREVfQjNDNFEzOTcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzYyL3JCQUNFMVBySGxYZ0E1SlpBQUFERV9CM0M0UTM5Ny5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMDciPu+8jDxicj7ljbM8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvN0MvckJBQ0ZGUHJIbGFoRi1kc0FBQUNXRGtNTlJBODM3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri83Qy9yQkFDRkZQckhsYWhGLWRzQUFBQ1dEa01OUkE4MzcucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTIzIj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvNjIvckJBQ0UxUHJIbGF3d2MwUUFBQUNGS3dxRTNZOTQ3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS82Mi9yQkFDRTFQckhsYXd3YzBRQUFBQ0ZLd3FFM1k5NDcucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iODUiPu+8jOKItTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS82Mi9yQkFDRTFQckhsU0NieFdUQUFBQmh4OExseVU0NjkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzYyL3JCQUNFMVBySGxTQ2J4V1RBQUFCaHg4TGx5VTQ2OS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI0NSI+77yMPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS82Mi9yQkFDRTFQckhsTGdxQmdBQUFBQ1ZuUHIwNEk3MDAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzYyL3JCQUNFMVBySGxMZ3FCZ0FBQUFDVm5QcjA0STcwMC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI5NCI+5ZyoPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhGLzdCL3JCQUNGRlBySGxMaXppUmRBQUFCaFE3aEduRTU1My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvN0IvckJBQ0ZGUHJIbExpemlSZEFBQUJoUTdoR25FNTUzLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjQyIj7kuIrmmK/ljZXosIPpgJLlh4/lh73mlbDvvIzmlYXpgIlC44CCPGJyPjwvcD4=