本课配套习题挑战模式1/5
A: 一个锐角和一直角边对应相等 |
B: 斜边和一锐角对应相等 |
C: 两个锐角对应相等 |
D: 两条直角边对应相等 |
- 提示1:5LiJ6KeS5b2i5YWo562J5Yik5a6a5pa55rOV
- 提示2:UnTkuInop5LlvaLlhajnrYnnmoTliKTlrprmlrnms5U=
- 答案:Qw==
6Kej562U77yaIEEsQSBBU+aIluiAheS4ukFTQSAsQixBQVMsQyxBQUEsRCxTQVM8YnI+5omA5Lul5pegQUFB5Yik5a6a5pa55rOVPGJyPuaVhemAiUM=
本课配套习题挑战模式2/5
如图,已知∠A=∠D=90°,要使用“HL”证明△ABC≌△DCB,应添加条件____;
A: ∠DBC=∠ACB |
B: AB=CD |
C: ∠ABC=∠BCD |
D: 以上都可以 |
- 提示1:PHA+5LiJ6KeS5b2i5YWo562J55qE5Yik5a6a5pa55rOVSEw8L3A+
- 提示2:PHA+5pac6L655LiO55u06KeS6L655a+55bqU55u4562JPC9wPg==
- 答案:Qg==
PHA+6Kej562U77ya4oi14oigQT3iiKBEPTkwwrDvvIxCQz1DQjxicj7lj4jiiLVBQj1DRDxicj7iiLTilrNBQkPiiYzilrNEQ0LvvIhITO+8iTxicj7mlYXpgIlCPC9wPg==
本课配套习题挑战模式3/5
如图,DA⊥AB,CB⊥AB,垂足分别为A、B,BD=AC.根据这些条件不能推出的结论是 ( )
A: AD∥BC |
B: AD=BC |
C: AC平分∠DAB |
D: ∠C=∠D |
- 提示1:PHA+5LiJ6KeS5b2i5YWo562J55qE5Yik5a6aSEw8L3A+
- 提示2:PHA+5YWo562J5ZCO5a+55bqU6KeS5a+55bqU6L6555u4562JPC9wPg==
- 答案:Qw==
PHA+6Kej562U77ya4oi1REHiiqVBQu+8jENC4oqlQUI8YnI+4oi0QUTiiKVCQzxicj7lj4jiiLVCRD1BQ++8jEFCPUJBPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BOC9CMy9yQkFDRkZURjdtT0JOdV9ZQUFBQzJrUEMxbVkwOTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E4L0IzL3JCQUNGRlRGN21PQk51X1lBQUFDMmtQQzFtWTA5Mi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMzIiPjxicj7iiLRBRD1CQywg4oigQz3iiKBELOKIoENBQj3iiKBEQkE8YnI+5b6X5LiN5Ye6QUPlubPliIbiiKBEQUI8YnI+5pWF6YCJQzwvcD4=
本课配套习题挑战模式4/5
如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFC的理由是().
A: SSS |
B: AAS |
C: SAS |
D: HL |
- 提示1:PHA+5bmz6KGM57q/55qE5oCn6LSoPC9wPg==
- 提示2:PHA+5LiJ6KeS5b2i5YWo562J55qE5Yik5a6a5pa55rOVPC9wPg==
- 答案:Qg==
PHA+6Kej562U77ya4oi1Q0XiiqVBQu+8jERG4oqlQUI8YnI+4oi04oigRT3iiKBGPGJyPuWPiOKItUFD4oilREI8YnI+4oi04oigQT3iiKBCPGJyPuWPiOKItUFDPUJEPGJyPuKItFJ04pazQUVD4omMUnTilrNCRkMoQUFTKTwvcD4=
本课配套习题挑战模式5/5
已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF; (2)△EBD≌△FCD; (3)BD=CD; (4)AD⊥BC
A: 1 |
B: 2 |
C: 3 |
D: 4 |
- 提示1:PHA+5LiJ6KeS5b2i5YWo562J55qE5Yik5a6a5pa55rOVPC9wPg==
- 提示2:PHA+5LiJ6KeS5b2i5YWo562J5a+55bqU6L655a+55bqU6KeS55u4562JPC9wPg==
- 答案:RA==
PHA+6Kej562U77ya4oi1QUI9QUPvvIxBROaYr+inkuW5s+WIhue6vzxicj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNzIvM0MvckJBQ0UxVEY4RHJBb29UN0FBQUN3SDRHbVprMjQ3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83Mi8zQy9yQkFDRTFURjhEckFvb1Q3QUFBQ3dINEdtWmsyNDcucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTI3Ij48YnI+4oi0QkQ9Q0Qs4oigQURCPeKIoEFEQz05MMKw77yM5Y2zQUTiiqVCQyziiKBCQUQ94oigREFDLOWNs0FE5bmz5YiG4oigRURGPGJyPuKItUJFPUNG77yM4oigQj3iiKBDLEJEPUJEPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BOC9CNC9yQkFDRkZURjhEcUNnY28zQUFBQzAwdTR2N2MzMDcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E4L0I0L3JCQUNGRlRGOERxQ2djbzNBQUFDMDB1NHY3YzMwNy5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIxMjUiPjxicj7mlYXpgIlEPC9wPg==