本课配套习题挑战模式1/4
下列各式,能用基本不等式直接求得最值的是( )
A: x+1x |
B: x2−1+1x2−1 |
C: 2x+2−x |
D: x(1−x) |
- 提示1:PHA+5Z+65pys5LiN562J5byPPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+YTwvdmFyPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI1Ij4rPC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjYiPmI8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNyI+4omlPC9zcGFuPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxOSI+Mjwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyMCI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMC45KTsiIGNsYXNzPSJzY2FsZWQgc3FydC1wcmVmaXgiPuKImjwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYgc3FydC1zdGVtIiBtYXRocXVpbGwtYmxvY2staWQ9IjIxIj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyMyI+YTwvdmFyPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjI0Ij5iPC92YXI+PC9zcGFuPjwvc3Bhbj48L3NwYW4+PHNwYW4+IDwvc3Bhbj4s5YmN5o+Q5p2h5Lu25piv77yMPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjUiPmE8L3Zhcj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjYiPiw8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjciPmI8L3Zhcj48L3NwYW4+PHNwYW4+IDwvc3Bhbj7pg73mmK/mraPmlbDvvIE8YnI+PC9wPg==
- 答案:Qw==
PHA+6Kej5p6Q77yaPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+eDwvdmFyPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI1Ij4rPC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjYiPjxzcGFuIGNsYXNzPSJudW1lcmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iNyI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjExIj4xPC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iZGVub21pbmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iOCI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTAiPng8L3Zhcj48L3NwYW4+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiPiZuYnNwOzwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuPiA8L3NwYW4+5LiteOS4jeS4gOWumuWkp+S6jjDvvIzlkIznkIY8c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxMiI+eDwvdmFyPjxzdXAgY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTQiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTUiPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNyI+Mjwvc3Bhbj48L3N1cD48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTgiPuKIkjwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTkiPjE8L3NwYW4+PC9zcGFuPjxzcGFuPiA8L3NwYW4+5Lmf5LiN5LiA5a6a5aSn5LqOMO+8jDxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyNiI+Mjwvc3Bhbj48c3VwIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIzIiBtYXRocXVpbGwtYmxvY2staWQ9IjI0Ij48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyNyI+eDwvdmFyPjwvc3VwPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyOCI+Kzwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzQiPjI8L3NwYW4+PHN1cCBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIzMSIgbWF0aHF1aWxsLWJsb2NrLWlkPSIzMiI+PHNwYW4gY2xhc3M9IiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjM1Ij7iiJI8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzYiPng8L3Zhcj48L3N1cD48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzciPj08L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQzIj4yPC9zcGFuPjxzdXAgY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNDAiIG1hdGhxdWlsbC1ibG9jay1pZD0iNDEiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQ0Ij54PC92YXI+PC9zdXA+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQ1Ij4rPC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQ2Ij48c3BhbiBjbGFzcz0ibnVtZXJhdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjQ3Ij48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNTAiPjE8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSI0OCI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjU3Ij4yPC9zcGFuPjxzdXAgY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNTMiIG1hdGhxdWlsbC1ibG9jay1pZD0iNTQiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjU2Ij54PC92YXI+PC9zdXA+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4gPC9zcGFuPiw8c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjYiPjI8L3NwYW4+PHN1cCBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyMyIgbWF0aHF1aWxsLWJsb2NrLWlkPSIyNCI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjciPng8L3Zhcj48L3N1cD48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNTgiPiZndDs8L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjYwIj4wPC9zcGFuPjwvc3Bhbj48c3Bhbj4gPC9zcGFuPuaYr+aBkuaIkOeri+eahO+8gUTpgInpobnkuZ/kuI3nrKblkIjpopjmhI/vvIE8YnI+PC9wPg==
本课配套习题挑战模式2/4
某工厂第一年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( )
A: x= a+b2 |
B: x≤a+b2 |
C: x>a+b2 |
D: x≥a+b2 |
- 提示1:PHA+5qC55o2u6aKY5oSP5YiX5Ye6562J5byPPHN0cm9uZz48L3N0cm9uZz48c3Ryb25nPjxlbT5BPC9lbT48L3N0cm9uZz48c3Ryb25nPigxPC9zdHJvbmc+PHN0cm9uZz7vvIs8L3N0cm9uZz48c3Ryb25nPjxlbT54PC9lbT48L3N0cm9uZz48c3Ryb25nPik8c3VwPjI8L3N1cD48L3N0cm9uZz48c3Ryb25nPu+8nTwvc3Ryb25nPjxzdHJvbmc+PGVtPkE8L2VtPjwvc3Ryb25nPjxzdHJvbmc+KDE8L3N0cm9uZz48c3Ryb25nPu+8izwvc3Ryb25nPjxzdHJvbmc+PGVtPmE8L2VtPjwvc3Ryb25nPjxzdHJvbmc+KSgxPC9zdHJvbmc+PHN0cm9uZz7vvIs8L3N0cm9uZz48c3Ryb25nPjxlbT5iPC9lbT48L3N0cm9uZz48c3Ryb25nPik8L3N0cm9uZz48c3Ryb25nPu+8jDwvc3Ryb25nPuaYr+WFs+mUrjxicj48L3A+PHA+PGJyPjwvcD48YnI+
- 答案:Qg==
PHA+PHN0cm9uZz7op6PmnpDvvJo8L3N0cm9uZz48c3Ryb25nPuS+nemimOaEj+aciTwvc3Ryb25nPjxzdHJvbmc+PGVtPkE8L2VtPjwvc3Ryb25nPjxzdHJvbmc+KDE8L3N0cm9uZz48c3Ryb25nPu+8izwvc3Ryb25nPjxzdHJvbmc+PGVtPng8L2VtPjwvc3Ryb25nPjxzdHJvbmc+KTxzdXA+Mjwvc3VwPjwvc3Ryb25nPjxzdHJvbmc+77ydPC9zdHJvbmc+PHN0cm9uZz48ZW0+QTwvZW0+PC9zdHJvbmc+PHN0cm9uZz4oMTwvc3Ryb25nPjxzdHJvbmc+77yLPC9zdHJvbmc+PHN0cm9uZz48ZW0+YTwvZW0+PC9zdHJvbmc+PHN0cm9uZz4pKDE8L3N0cm9uZz48c3Ryb25nPu+8izwvc3Ryb25nPjxzdHJvbmc+PGVtPmI8L2VtPjwvc3Ryb25nPjxzdHJvbmc+KTwvc3Ryb25nPjxzdHJvbmc+77yMPC9zdHJvbmc+PGJyPjwvcD48cD48c3Ryb25nPuKItDwvc3Ryb25nPjxzdHJvbmc+MTwvc3Ryb25nPjxzdHJvbmc+77yLPC9zdHJvbmc+PHN0cm9uZz48ZW0+eDwvZW0+77ydPC9zdHJvbmc+PHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMC45KTsiIGNsYXNzPSJzY2FsZWQgc3FydC1wcmVmaXgiPuKImjwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYgc3FydC1zdGVtIiBtYXRocXVpbGwtYmxvY2staWQ9IjUiPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjciPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iOCI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjkiPjE8L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEwIj4rPC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjExIj5hPC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KTwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTIiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTMiPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNCI+MTwvc3Bhbj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTUiPis8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTYiPmI8L3Zhcj48L3NwYW4+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMS4wNSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4pPC9zcGFuPjwvc3Bhbj48L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+PHN0cm9uZz7iiaQ8L3N0cm9uZz48c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNyI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxOCI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIxIj4xPC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iZGVub21pbmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTkiPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyMiI+Mjwvc3Bhbj48L3NwYW4+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiPiZuYnNwOzwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuPiZuYnNwOzwvc3Bhbj48c3Ryb25nPlsoMe+8izwvc3Ryb25nPjxzdHJvbmc+PGVtPmE8L2VtPjwvc3Ryb25nPjxzdHJvbmc+KTwvc3Ryb25nPjxzdHJvbmc+77yLPC9zdHJvbmc+PHN0cm9uZz4oMTwvc3Ryb25nPjxzdHJvbmc+77yLPC9zdHJvbmc+PHN0cm9uZz48ZW0+YjwvZW0+PC9zdHJvbmc+PHN0cm9uZz4pXTwvc3Ryb25nPjxicj48L3A+PHA+PHN0cm9uZz7vvJ08L3N0cm9uZz48c3Ryb25nPjHvvIs8L3N0cm9uZz48c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNyI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxOCI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjMiPmE8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjQiPis8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjUiPmI8L3Zhcj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjE5Ij48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjIiPjI8L3NwYW4+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+PHN0cm9uZz7iiLQ8L3N0cm9uZz48c3Ryb25nPjxlbT54PC9lbT7iiaQ8L3N0cm9uZz48c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNyI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxOCI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjMiPmE8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjQiPis8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjUiPmI8L3Zhcj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjE5Ij48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjIiPjI8L3NwYW4+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+PHN0cm9uZz4uPC9zdHJvbmc+PHN0cm9uZz7mlYXpgIk8L3N0cm9uZz48c3Ryb25nPkIuPC9zdHJvbmc+PGJyPjwvcD48cD48c3Ryb25nPuetlOahiO+8mjwvc3Ryb25nPjxzdHJvbmc+Qjwvc3Ryb25nPjxicj48L3A+
本课配套习题挑战模式3/4
若x,y∈R+,且x+4y=20,则x·y的最大值是( )
A: 20 |
B: 25 |
C: 24 |
D: 12 |
- 提示1:PHA+5oqKeOeci+aIkOS4gOmhue+8jOaKijR555yL5oiQ5LiA6aG5PGJyPjwvcD4=
- 答案:Qg==
PHA+PHN0cm9uZz7op6PmnpDvvJo8L3N0cm9uZz48c3Ryb25nPuKItTwvc3Ryb25nPjxzdHJvbmc+MjA8L3N0cm9uZz48c3Ryb25nPu+8nTwvc3Ryb25nPjxzdHJvbmc+PGVtPng8L2VtPjwvc3Ryb25nPjxzdHJvbmc+77yLPC9zdHJvbmc+PHN0cm9uZz40PGVtPnk8L2VtPjwvc3Ryb25nPjxzdHJvbmc+4omlPC9zdHJvbmc+PHN0cm9uZz4yPC9zdHJvbmc+PHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMC45KTsiIGNsYXNzPSJzY2FsZWQgc3FydC1wcmVmaXgiPuKImjwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYgc3FydC1zdGVtIiBtYXRocXVpbGwtYmxvY2staWQ9IjUiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjciPnk8L3Zhcj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iOCI+Ljwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iOSI+NDwvc3Bhbj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxMCI+eDwvdmFyPjwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuPiZuYnNwOzwvc3Bhbj48c3Ryb25nPu+8nTwvc3Ryb25nPjxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDAuOSk7IiBjbGFzcz0ic2NhbGVkIHNxcnQtcHJlZml4Ij48L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEzIj40PC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDAuOSk7IiBjbGFzcz0ic2NhbGVkIHNxcnQtcHJlZml4Ij7iiJo8L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIHNxcnQtc3RlbSIgbWF0aHF1aWxsLWJsb2NrLWlkPSI1Ij48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxMCI+eDwvdmFyPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjExIj55PC92YXI+PC9zcGFuPjwvc3Bhbj48L3NwYW4+PHNwYW4+ICw8L3NwYW4+PHN0cm9uZz48L3N0cm9uZz48YnI+PC9wPjxwPjxzdHJvbmc+4oi0PC9zdHJvbmc+PHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMC45KTsiIGNsYXNzPSJzY2FsZWQgc3FydC1wcmVmaXgiPuKImjwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYgc3FydC1zdGVtIiBtYXRocXVpbGwtYmxvY2staWQ9IjUiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEwIj54PC92YXI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTEiPnk8L3Zhcj48L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+PHN0cm9uZz7iiaQ1PC9zdHJvbmc+PHN0cm9uZz7ih5I8L3N0cm9uZz48c3Ryb25nPjxlbT54eTwvZW0+PC9zdHJvbmc+PHN0cm9uZz7iiaQ8L3N0cm9uZz48c3Ryb25nPjI1Ljwvc3Ryb25nPjxzdHJvbmc+562J5Y+35oiQ56uL55qE5p2h5Lu25pivPC9zdHJvbmc+PHN0cm9uZz48ZW0+eDwvZW0+PC9zdHJvbmc+PHN0cm9uZz7vvJ08L3N0cm9uZz48c3Ryb25nPjQ8ZW0+eTwvZW0+PC9zdHJvbmc+PHN0cm9uZz7vvJ08L3N0cm9uZz48c3Ryb25nPjEwLjwvc3Ryb25nPjxzdHJvbmc+5Y2zPC9zdHJvbmc+PHN0cm9uZz48ZW0+eDwvZW0+PC9zdHJvbmc+PHN0cm9uZz7vvJ08L3N0cm9uZz48c3Ryb25nPjEwPC9zdHJvbmc+PHN0cm9uZz7vvIw8L3N0cm9uZz48c3Ryb25nPjxlbT55PC9lbT48L3N0cm9uZz48c3Ryb25nPu+8nTwvc3Ryb25nPjxzdHJvbmc+Ljwvc3Ryb25nPjxicj48L3A+PHA+PHN0cm9uZz7iiLQ8L3N0cm9uZz48c3Ryb25nPjxlbT54eTwvZW0+PC9zdHJvbmc+PHN0cm9uZz7nmoTmnIDlpKflgLzmmK88L3N0cm9uZz48c3Ryb25nPjI1Ljwvc3Ryb25nPjxicj48L3A+PHA+PHN0cm9uZz7nrZTmoYjvvJo8L3N0cm9uZz48c3Ryb25nPjI1PC9zdHJvbmc+PC9wPjxwPjxicj48L3A+
本课配套习题挑战模式4/4
已知x、y>0且x+y=1,则p=x+1x +y+1y 的最小值为( )
A: 3 |
B: 4 |
C: 5 |
D: 6 |
- 提示1:PHA+5bCGPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+eDwvdmFyPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI1Ij4rPC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjYiPnk8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNyI+PTwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iOCI+MTwvc3Bhbj48L3NwYW4+PHNwYW4+IDwvc3Bhbj7kuK3nmoQx5bim5YWl5Yiw5YiG5a2Q5b2T5LitPGJyPjwvcD4=
- 答案:Qw==
PHA+PHN0cm9uZz7op6PmnpDvvJo8L3N0cm9uZz48c3Ryb25nPuatpOmimOW+iOWuueaYk+WHuumUme+8jOiupOS4ujwvc3Ryb25nPjxzdHJvbmc+PGVtPng8L2VtPu+8izwvc3Ryb25nPjxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEwIj48c3BhbiBjbGFzcz0ibnVtZXJhdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjExIj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTQiPjE8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMiI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTUiPng8L3Zhcj48L3NwYW4+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiPiZuYnNwOzwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuPiZuYnNwOzwvc3Bhbj48c3Ryb25nPuKJpTwvc3Ryb25nPjxzdHJvbmc+Mjwvc3Ryb25nPjxzdHJvbmc+77yMPC9zdHJvbmc+PHN0cm9uZz48ZW0+eTwvZW0+PC9zdHJvbmc+PHN0cm9uZz7vvIs8L3N0cm9uZz48c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxMCI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMSI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE0Ij4xPC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iZGVub21pbmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTIiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE2Ij55PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+PHN0cm9uZz7iiaUyPC9zdHJvbmc+PHN0cm9uZz7vvIw8L3N0cm9uZz48YnI+PC9wPjxwPjxzdHJvbmc+4oi0PC9zdHJvbmc+PHN0cm9uZz48ZW0+cDwvZW0+PC9zdHJvbmc+PHN0cm9uZz7iiaU8L3N0cm9uZz48c3Ryb25nPjQ8L3N0cm9uZz48c3Ryb25nPu+8jOmUmemAiTwvc3Ryb25nPjxzdHJvbmc+Qjwvc3Ryb25nPjxzdHJvbmc+77yM6ZSZ6K+v55qE5Y6f5Zug5pivPC9zdHJvbmc+PHN0cm9uZz48ZW0+eDwvZW0+PC9zdHJvbmc+PHN0cm9uZz7jgIE8L3N0cm9uZz48c3Ryb25nPjxlbT55PC9lbT48L3N0cm9uZz48c3Ryb25nPuS4jeiDveWQjOaXtuWPluWIsDwvc3Ryb25nPjxzdHJvbmc+MS48L3N0cm9uZz48YnI+PC9wPjxwPjxzdHJvbmc+5q2j56Gu6Kej5rOV77yaPC9zdHJvbmc+PHN0cm9uZz48ZW0+eDwvZW0+77yLPC9zdHJvbmc+PHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gY2xhc3M9ImZyYWN0aW9uIG5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTAiPjxzcGFuIGNsYXNzPSJudW1lcmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTEiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE4Ij54PC92YXI+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE5Ij4rPC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIwIj55PC92YXI+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMiI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTciPng8L3Zhcj48L3NwYW4+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiPiZuYnNwOzwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuPiZuYnNwOzwvc3Bhbj48c3Ryb25nPu+8izwvc3Ryb25nPjxzdHJvbmc+PGVtPnk8L2VtPu+8izwvc3Ryb25nPjxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEwIj48c3BhbiBjbGFzcz0ibnVtZXJhdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjExIj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxOCI+eDwvdmFyPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxOSI+Kzwvc3Bhbj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyMCI+eTwvdmFyPjwvc3Bhbj48c3BhbiBjbGFzcz0iZGVub21pbmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTIiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIxIj55PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+PHN0cm9uZz7vvJ08L3N0cm9uZz48c3Ryb25nPjPvvIs8L3N0cm9uZz48c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxMCI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMSI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTgiPng8L3Zhcj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjEyIj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyMSI+eTwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7d2lkdGg6MCI+Jm5ic3A7PC9zcGFuPjwvc3Bhbj48L3NwYW4+PHNwYW4+Jm5ic3A7PC9zcGFuPjxzdHJvbmc+77yLPC9zdHJvbmc+PHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gY2xhc3M9ImZyYWN0aW9uIG5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTAiPjxzcGFuIGNsYXNzPSJudW1lcmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTEiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIzIj55PC92YXI+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMiI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjIiPng8L3Zhcj48L3NwYW4+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiPiZuYnNwOzwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuPiZuYnNwOzwvc3Bhbj48c3Ryb25nPuKJpTwvc3Ryb25nPjxzdHJvbmc+Mzwvc3Ryb25nPjxzdHJvbmc+77yLPC9zdHJvbmc+PHN0cm9uZz4yPC9zdHJvbmc+PHN0cm9uZz7vvJ08L3N0cm9uZz48c3Ryb25nPjUuPC9zdHJvbmc+PGJyPjwvcD4=