本课配套习题挑战模式1/5
在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点. 设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,这个二次函数的解析式为( ).
A: y=x2-x+ |
B: y=-x2x+ |
C: y=x2-x-或y=-x2x+ |
D: y=x2-x+或y=-x2x+ |
- 提示1:PHA+6aaW5YWI5rGC5Ye6Q++8jETngrnlnZDmoIfvvIzov5vogIzlvpflh7pDT+eahOmVv++8jOWIqeeUqOW9k+KWs0FPQ+S4juKWs0RFQuebuOS8vOaXtu+8jOagueaNruKRoOWBh+iuvuKIoE9DQT3iiKBFQkTvvIzikaHlgYforr7iiKBPQ0E94oigRURC77yM5YiG5Yir5rGC5Ye65Y2z5Y+vLjwvcD4=
- 答案:RA==
PHA+6Kej77ya6K6+5LqM5qyh5Ye95pWw55qE6KGo6L6+5byP5Li677yaeT1h77yIeC0x77yJ77yIeC0z77yJ77yIYeKJoDDvvInvvIw8YnI+5b2TeD0w5pe277yMeT0zYe+8jOW9k3g9MuaXtu+8jHk9LWHvvIw8YnI+4oi054K5Q+WdkOagh+S4uu+8mu+8iDDvvIwzYe+8ie+8jOmhtueCuUTlnZDmoIfkuLrvvJrvvIgy77yMLWHvvInvvIw8YnI+4oi0T0M9fDNhfO+8jDxicj7lj4jiiLVB77yIMe+8jDDvvInvvIxF77yIMu+8jDDvvInvvIw8YnI+4oi0QU89Me+8jEVCPTHvvIxERT18LWF8PXxhfO+8jDxicj7lvZPilrNBT0PkuI7ilrNERULnm7jkvLzml7bvvIw8YnI+4pGgIOiuvuKIoE9DQT3iiKBFQkTvvIw8YnI+5Y+v5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFc2QzF1S3NBQUFCaDJQQkVqZzA2MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4VzZDMXVLc0FBQUJoMlBCRWpnMDYxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij49PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFc3d09ZeHNBQUFCYi1xcXNNNDMxNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vzd3T1l4c0FBQUJiLXFxc000MzE2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE4Ij7vvIw8YnI+5Y2zPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFdfQml1MkhBQUFCVFkzVGdMQTkwNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4V19CaXUySEFBQUJUWTNUZ0xBOTA0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE3Ij49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFctaWVMV2pBQUFCZnVLUmxlbzQ3MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vy1pZUxXakFBQUJmdUtSbGVvNDcwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI1Ij7vvIw8YnI+4oi0YT08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4VzZoQm9WbEFBQUJpZHlvQVR3ODUxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPuaIlmE9LTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFc2aEJvVmxBQUFCaWR5b0FUdzg1MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNiI+77yMPGJyPuKRoSDorr7iiKBPQ0E94oigRURC77yM5Y+v5b6XPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFctaUZSQ3NBQUFCanhtbWVpczAwOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4Vy1pRlJDc0FBQUJqeG1tZWlzMDA4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFdfUkFLQ3ZBQUFCYlZLZTV5VTE5OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4V19SQUtDdkFBQUJiVktlNXlVMTk4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE4Ij7vvIw8YnI+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFctaEZrNHRBQUFBMVRuakZMWTAwNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vy1oRms0dEFBQUExVG5qRkxZMDA3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4V19RWkw0NkFBQUJoeGR5X0hZNDE4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMC9yQkFDRkZQeHhXX1FaTDQ2QUFBQmh4ZHlfSFk0MTgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjUiPu+8jOatpOaWueeoi+aXoOino++8mzxicj7nu7zkuIrmiYDov7DvvIzmiYDlvpfkuozmrKHlh73mlbDnmoTooajovr7lvI/kuLrvvJp5PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFc2aEJvVmxBQUFCaWR5b0FUdzg1MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNiI+eDxzdXA+Mjwvc3VwPi08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4VzZTOTg4OEFBQUJ2ZFZydWJRODQ1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNlM5ODg4QUFBQnZkVnJ1YlE4NDUucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPngrPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFc2U05iMldBQUFCa1FVU2VoRTA2Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4VzZTTmIyV0FBQUJrUVVTZWhFMDY2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7miJZ5PS08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4VzZoQm9WbEFBQUJpZHlvQVR3ODUxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPng8c3VwPjI8L3N1cD48aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vzd3V3VtY0FBQUIxaUFuQTdrNTAwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXN3dXdW1jQUFBQjFpQW5BN2s1MDAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDEiPngrPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFc2U05iMldBQUFCa1FVU2VoRTA2Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4VzZTTmIyV0FBQUJrUVVTZWhFMDY2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj4uPGJyPuaVhemAiUTjgII8L3A+
本课配套习题挑战模式2/5
如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A(﹣4,0),过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为-1,AC:BC=3:1. 设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,此二次函数的关系式为( ).
A: y=-x2+4 |
B: y=-x2-2x |
C: y=-x2-4x |
D: y=-x2-4 |
- 提示1:PHA+5YWI5bCGQe+8iC0077yMMO+8ieS7o+WFpXk9YXg8c3VwPjI8L3N1cD4rYnjvvIzljJbnroDlvpflh7piPTRh77yM5Y2zeT1heDxzdXA+Mjwvc3VwPis0YXjvvIzliJnpobbngrlG77yILTLvvIwtNGHvvInvvIzorr7nm7Tnur9BQueahOino+aekOW8j+S4unk9a3grbu+8jOWwhkHvvIgtNO+8jDDvvInku6PlhaXvvIzljJbnroDlvpduPTRr77yM5Y2z55u057q/QULnmoTop6PmnpDlvI/kuLp5PWt4KzRr77yM5YiZQueCue+8iDDvvIw0a++8ie+8jETvvIgtMu+8jDJr77yJ77yMQ++8iC0x77yMM2vvvIkuIOeUsUPvvIgtMe+8jDNr77yJ5Zyo5oqb54mp57q/eT1heDxzdXA+Mjwvc3VwPis0YXjkuIrvvIzlvpflh7ozaz1hLTRh77yM5YyW566A5b6X5Yiwaz0tYS4g5YaN55Sx4pazRkNE5LiO55u06KeS4pazQUVE55u45Ly877yM5YiZ4pazRkNE5piv55u06KeS5LiJ6KeS5b2i77yM5Y+I4oigRkRDPeKIoEFERe+8nDkwwrDvvIziiKBDRkTvvJw5MMKw77yM5b6X5Ye64oigRkNEPTkwwrDvvIzilrNGQ0TiiL3ilrNBRUQuIOWGjeagueaNruS4pOeCueS5i+mXtOeahOi3neemu+WFrOW8j+W+l+WHukZDPHN1cD4yPC9zdXA+PUNEPHN1cD4yPC9zdXA+PTErYTxzdXA+Mjwvc3VwPu+8jOW+l+WHuuKWs0ZDROaYr+etieiFsOebtOinkuS4ieinkuW9ou+8jOWImeKWs0FFROS5n+aYr+etieiFsOebtOinkuS4ieinkuW9ou+8jOaJgOS7peKIoERBRT00NcKw77yM55Sx5LiJ6KeS5b2i5YaF6KeS5ZKM5a6a55CG5rGC5Ye64oigT0JBPTQ1wrDvvIzpgqPkuYhPQj1PQT0077yM5Y2zNGs9NO+8jOaxguWHums9Me+8jGE9LTHvvIzov5vogIzlvpfliLDmraTkuozmrKHlh73mlbDnmoTlhbPns7vlvI/kuLp5PS14PHN1cD4yPC9zdXA+LTR4LjwvcD4=
- 答案:Qw==
PHA+6Kej77ya4oi15LqM5qyh5Ye95pWweT1heDxzdXA+Mjwvc3VwPitieO+8iGHvvJww77yJ55qE5Zu+6LGh6L+HQeeCue+8iC0077yMMO+8ie+8jDxicj7iiLQxNmEtNGI9MO+8jDxicj7iiLRiPTRh77yMPGJyPuKItHk9YXg8c3VwPjI8L3N1cD4rNGF477yM5a+556ew6L205Li655u057q/eD0tMu+8jDxicj7iiLRG54K55Z2Q5qCH5Li677yILTLvvIwtNGHvvIkuPGJyPuiuvuebtOe6v0FC55qE6Kej5p6Q5byP5Li6eT1reCtu77yM5bCGQe+8iC0077yMMO+8ieS7o+WFpe+8jDxicj7lvpctNGsrbj0w77yMPGJyPuKItG49NGvvvIw8YnI+4oi055u057q/QULnmoTop6PmnpDlvI/kuLp5PWt4KzRr77yMPGJyPuKItELngrnlnZDmoIfkuLrvvIgw77yMNGvvvInvvIxE54K55Z2Q5qCH5Li677yILTLvvIwya++8ie+8jEPngrnlnZDmoIfkuLrvvIgtMe+8jDNr77yJLjxicj7iiLVD77yILTHvvIwza++8ieWcqOaKm+eJqee6v3k9YXg8c3VwPjI8L3N1cD4rNGF45LiK77yMPGJyPuKItDNrPWEtNGHvvIw8YnI+4oi0az0tYS48YnI+4oi14pazQUVE5Lit77yM4oigQUVEPTkwwrDvvIw8YnI+4oi06Iul4pazRkNE5LiO4pazQUVE55u45Ly877yM5YiZ4pazRkNE5piv55u06KeS5LiJ6KeS5b2i77yMPGJyPuKIteKIoEZEQz3iiKBBREXvvJw5MMKw77yM4oigQ0ZE77ycOTDCsO+8jDxicj7iiLTiiKBGQ0Q9OTDCsO+8jDxicj7iiLTilrNGQ0TiiL3ilrNBRUQuPGJyPuKItUbvvIgtMu+8jC00Ye+8ie+8jEPvvIgtMe+8jDNr77yJ77yMRO+8iC0y77yMMmvvvInvvIxrPS1h77yMPGJyPuKItEZDPHN1cD4yPC9zdXA+Pe+8iC0xKzLvvIk8c3VwPjI8L3N1cD4r77yIM2srNGHvvIk8c3VwPjI8L3N1cD49MSthPHN1cD4yPC9zdXA+77yMQ0Q8c3VwPjI8L3N1cD4977yILTIrMe+8iTxzdXA+Mjwvc3VwPivvvIgyay0za++8iTxzdXA+Mjwvc3VwPj0xK2E8c3VwPjI8L3N1cD7vvIw8YnI+4oi0RkM9Q0TvvIw8YnI+4oi04pazRkNE5piv562J6IWw55u06KeS5LiJ6KeS5b2i77yMPGJyPuKItOKWs0FFROaYr+etieiFsOebtOinkuS4ieinkuW9ou+8jDxicj7iiLTiiKBEQUU9NDXCsO+8jDxicj7iiLTiiKBPQkE9NDXCsO+8jDxicj7iiLRPQj1PQT0077yMPGJyPuKItDRrPTTvvIw8YnI+4oi0az0x77yMPGJyPuKItGE9LTHvvIw8YnI+4oi05q2k5LqM5qyh5Ye95pWw55qE5YWz57O75byP5Li6eT0teDxzdXA+Mjwvc3VwPi00eC48YnI+5pWF6YCJQ+OAgjwvcD4=
本课配套习题挑战模式3/5
二次函数y=mx2+2mx-3m(其中m>0)的图象与x轴的交点为A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m),顶点为D. 如图,当m取( )时,以A、D、C为顶点的三角形与△BOC相似?
A: 1 |
B: 2 |
C: 3 |
D: 4 |
- 提示1:PHA+4pazQUNE5LiO4pazQk9D55u45Ly877yM5LiU4pazQk9D5Li655u06KeS5LiJ6KeS5b2i77yM5omA5Lul4pazQUNE5b+F5Li655u06KeS5LiJ6KeS5b2iLiDmnKzpl67liIblpJrnp43mg4XlvaLvvIzpnIDopoHliIbnsbvorqjorrrvvIzpgb/lhY3mvI/op6MuPC9wPg==
- 答案:QQ==
PHA+6Kej77ya4oi1eT1teDxzdXA+Mjwvc3VwPisybXgtM209be+8iHgrMe+8iTxzdXA+Mjwvc3VwPi00be+8jDxicj7iiLTpobbngrlE5Z2Q5qCH5Li677yILTHvvIwtNG3vvIkuPGJyPuWmguetlOWbvu+8jOi/h+eCuUTkvZxEReKKpXjovbTkuo7ngrlF77yM5YiZREU9NG3vvIxPRT0x77yMQUU9T0EtT0U9Mu+8mzxicj7ov4fngrlE5L2cREbiiqV56L205LqO54K5Ru+8jOWImURGPTHvvIxDRj1PRi1PQz00bS0zbT1tLjxicj48aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WFh3a3h3OUFBQWpaWkxvSFFjNTgwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYWHdreHc5QUFBalpaTG9IUWM1ODAucG5nIiBhbHQ9IumdkuaenOWtpumZoiIgYWxpZ249ImxlZnQiIGhlaWdodD0iMTc2IiBoc3BhY2U9IjEyIiB3aWR0aD0iMTc1Ij7nlLHli77ogqHlrprnkIblvpfvvJo8YnI+QUM8c3VwPjI8L3N1cD49T0M8c3VwPjI8L3N1cD4rT0E8c3VwPjI8L3N1cD49OW08c3VwPjI8L3N1cD4rOe+8mzxicj5DRDxzdXA+Mjwvc3VwPj1DRjxzdXA+Mjwvc3VwPitERjxzdXA+Mjwvc3VwPj1tPHN1cD4yPC9zdXA+KzHvvJs8YnI+QUQ8c3VwPjI8L3N1cD49REU8c3VwPjI8L3N1cD4rQUU8c3VwPjI8L3N1cD49MTZtPHN1cD4yPC9zdXA+KzQuPGJyPuKIteKWs0FDROS4juKWs0JPQ+ebuOS8vO+8jOS4lOKWs0JPQ+S4uuebtOinkuS4ieinkuW9ou+8jDxicj7iiLTilrNBQ0Tlv4XkuLrnm7Top5LkuInop5LlvaIuPGJyPmnvvInoi6XngrlB5Li655u06KeS6aG254K577yM5YiZQUM8c3VwPjI8L3N1cD4rQUQ8c3VwPjI8L3N1cD49Q0Q8c3VwPjI8L3N1cD7vvIw8YnI+5Y2z77ya77yIOW08c3VwPjI8L3N1cD4rOe+8iSvvvIgxNm08c3VwPjI8L3N1cD4rNO+8iT1tPHN1cD4yPC9zdXA+KzHvvIw8YnI+5pW055CG5b6X77yabTxzdXA+Mjwvc3VwPj0tPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhhaUhGSzNBQUFCRHVTbWIwZzUwMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGFpSEZLM0FBQUJEdVNtYjBnNTAzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7iiLTmraTnp43mg4XlvaLkuI3lrZjlnKjvvJs8YnI+aWnvvInoi6XngrlE5Li655u06KeS6aG254K577yM5YiZQUQ8c3VwPjI8L3N1cD4rQ0Q8c3VwPjI8L3N1cD49QUM8c3VwPjI8L3N1cD7vvIw8YnI+5Y2z77ya77yIMTZtPHN1cD4yPC9zdXA+KzTvvIkr77yIbTxzdXA+Mjwvc3VwPisx77yJPTltPHN1cD4yPC9zdXA+KznvvIw8YnI+5pW055CG5b6X77yabTxzdXA+Mjwvc3VwPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGFpSEZLM0FBQUJEdVNtYjBnNTAzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYYWlIRkszQUFBQkR1U21iMGc1MDMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMPGJyPuKItW3vvJ4w77yM4oi0bT08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4WGF5b2puNkFBQUJqRnp2WkgwNjA3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMC9yQkFDRkZQeHhYYXlvam42QUFBQmpGenZaSDA2MDcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPi48YnI+5q2k5pe277yM5Y+v5rGC5b6X4pazQUNE55qE5LiJ6L656ZW/5Li677yaQUQ9MjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMC9yQkFDRkZQeHhXNlNOYjJXQUFBQmtRVVNlaEUwNjYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFc2U05iMldBQUFCa1FVU2VoRTA2Ni5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yMQ0Q9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFhiU29xalVBQUFCb2xUdkNSNDE2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4WGJTb3FqVUFBQUJvbFR2Q1I0MTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE2Ij7vvIxBQz08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGFSX21ZZEFBQUJ3eHYtekVjNjE0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYYVJfbVlkQUFBQnd4di16RWM2MTQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPu+8mzxicj7ilrNCT0PnmoTkuInovrnplb/kuLrvvJpPQj0x77yMT0M9PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFhiRG41cFJBQUFCTTE4TW5xQTc4Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4WGJEbjVwUkFBQUJNMThNbnFBNzg3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jEJDPTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYYXliVnptQUFBQnMwZjRhZkE0NzMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhheWJWem1BQUFCczBmNGFmQTQ3My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNCI+Ljxicj7kuKTkuKrkuInop5LlvaLlr7nlupTovrnkuI3miJDmr5TkvovvvIzkuI3lj6/og73nm7jkvLzvvIw8YnI+4oi05q2k56eN5oOF5b2i5LiN5a2Y5Zyo77ybPGJyPmlpae+8ieiLpeeCuUPkuLrnm7Top5LpobbngrnvvIzliJlBQzxzdXA+Mjwvc3VwPitDRDxzdXA+Mjwvc3VwPj1BRDxzdXA+Mjwvc3VwPu+8jDxicj7ljbPvvJrvvIg5bTxzdXA+Mjwvc3VwPis577yJK++8iG08c3VwPjI8L3N1cD4rMe+8iT0xNm08c3VwPjI8L3N1cD4rNO+8jDxicj7mlbTnkIblvpfvvJptPHN1cD4yPC9zdXA+PTHvvIw8YnI+4oi1be+8njDvvIziiLRtPTEuPGJyPuatpOaXtu+8jOWPr+axguW+l+KWs0FDROeahOS4iei+uemVv+S4uu+8mkFEPTI8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGJET2RyZEFBQUJrOTJjUnBJODkwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYYkRPZHJkQUFBQms5MmNScEk4OTAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPu+8jENEPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYZml1V28wQUFBQmtVME02NkEyNTYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhmaXVXbzBBQUFCa1UwTTY2QTI1Ni5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yMQUM9MzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYZml1V28wQUFBQmtVME02NkEyNTYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhmaXVXbzBBQUFCa1UwTTY2QTI1Ni5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77ybPGJyPuKWs0JPQ+eahOS4iei+uemVv+S4uu+8mk9CPTHvvIxPQz0z77yMQkM9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFhld0U3Q1ZBQUFCdVZfdVdpUTc0OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WGV3RTdDVkFBQUJ1Vl91V2lRNzQ5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjMzIj4uPGJyPuKItTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhYZWlZcDd6QUFBQmxDeVItdDQ5NTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFhlaVlwN3pBQUFCbEN5Ui10NDk1NS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOSI+77ydPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhlZ0RvQ3RBQUFCaXRmamlQSTc1NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGVnRG9DdEFBQUJpdGZqaVBJNzU1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE4Ij7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WGZRUFU4Z0FBQUJkQlppNjBrOTMzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhYZlFQVThnQUFBQmRCWmk2MGs5MzMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTkiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGZpdVdvMEFBQUJrVTBNNjZBMjU2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYZml1V28wQUFBQmtVME02NkEyNTYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPu+8jDxicj7iiLTmu6HotrPkuKTkuKrkuInop5LlvaLnm7jkvLznmoTmnaHku7YuIOKItG09MS48YnI+57u85LiK5omA6L+w77yM5b2TbT0x5pe277yM5LulQeOAgUTjgIFD5Li66aG254K555qE5LiJ6KeS5b2i5LiO4pazQk9D55u45Ly8Ljxicj7mlYXpgIlB44CCPC9wPg==
本课配套习题挑战模式4/5
已知一个二次函数y=-x2+2x+3的图象经过A(-1,0)、B(0,3)、C(4,-5)三点. 其图象的顶点D的坐标;这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点. 在△AOB、△BOE、△ABE和△BDE着四个三角形中,是相似三角形的是( )。
A: △AOB∽△BOE∽△ABE∽△BDE |
B: △AOB∽△DBE |
C: △AOB∽△BOE、△ABE∽△BDE |
D: △AOB∽△BDE、△BOE∽△ABE |
- 提示1:PHA+5Zyo5Z2Q5qCH6L205LiK5q+P5LiA54K555qE5Z2Q5qCH6YO95piv5bey55+l77yM5YiZ5Y+v5qC55o2u5Lik54K56Ze055qE6Led56a75YWs5byP5rGC5b6X5q+P5LiA57q/5q6155qE6ZW/77yM6Iul5Zyo5Lik5LiJ6KeS5b2i5Lit77yM5LiJ6L655a+55bqU5oiQ5q+U5L6L77yM6ICM6L+Z5Lik5LiJ6KeS5b2i55u45Ly877yM5Y+v5o6o5b6X4pazQU9C4oi94pazREJFLjwvcD4=
- 答案:Qg==
PHA+6Kej77ya5Zyo55u06KeS5Z2Q5qCH5bmz6Z2i5YaF55S75Ye65Zu+5b2iLjxicj7iiLVPQT0x77yMT0I9M++8jEFCPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhYZXdFN0NWQUFBQnVWX3VXaVE3NDkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFhld0U3Q1ZBQUFCdVZfdVdpUTc0OS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIzMyI+77yMQkQ9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhmaXVXbzBBQUFCa1UwTTY2QTI1Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGZpdVdvMEFBQUJrVTBNNjZBMjU2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvIxCRT0zPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhmaXVXbzBBQUFCa1UwTTY2QTI1Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGZpdVdvMEFBQUJrVTBNNjZBMjU2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvIxERT08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WHFSa1NuQUFBQUJ5QWRaRDQwMDAyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYcVJrU25BQUFBQnlBZFpENDAwMDIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMzMiPi48YnI+5b6XPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFhxVHRXMS1BQUFCakI2MmtBazQwOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WHFUdFcxLUFBQUJqQjYya0FrNDA5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhyQ210RW5BQUFCYkdqaFk4STMyNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WHJDbXRFbkFBQUJiR2poWThJMzI2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFhxQVRBYlVBQUFCaFgzQkZ1RTEzMi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WHFBVEFiVUFBQUJoWDNCRnVFMTMyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE4Ij49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhmaXVXbzBBQUFCa1UwTTY2QTI1Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGZpdVdvMEFBQUJrVTBNNjZBMjU2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj4uPGJyPuKItOKWs0FPQuKIveKWs0RCRS48YnI+5pWF6YCJQuOAgjwvcD4=
本课配套习题挑战模式5/5
如图,已知二次函数y=x2-2x+2图象的顶点坐标为C(1,1),直线y=x+2的图象与该二次函数的图象交于A、B两点,其中A点坐标为(,),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点. D为直线AB与这个二次函数图象对称轴的交点,在线段AB上确定一点P,使得以点P、E、D为顶点的三角形与△BOF相似时,P点的坐标是( ).
A: (,),(,) |
B: (,),(,) |
C: (,),(,) |
D: (,),(,) |
- 提示1:PHA+5ZyoUOeCuei/kOWKqOi/h+eoi+S4re+8jOKIoERQReWPquWPr+iDveaYr+mUkOinkuaIlumSneinku+8jOaVheebtOinkumhtueCueWPquacieS4pOenjeWvueW6lOWFs+ezu++8jOWNs0/lr7lE77yMT+WvuUXvvIzliIbkuKTnp43mg4XlhrXvvIzlhpnmiJDnm7jkvLzmr5TvvIzljbPilrNQREXiiL3ilrNCT0bvvIzilrNQRUTiiL3ilrNCT0bvvIzliIbliKvmsYLop6MuPC9wPg==
- 答案:RA==
PHA+6Kej77ya4oi154K5UOWcqOebtOe6v3k9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhhaUhGSzNBQUFCRHVTbWIwZzUwMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WGFpSEZLM0FBQUJEdVNtYjBnNTAzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPngrMuS4iu+8jOeCuUXlnKjmipvniannur95PXg8c3VwPjI8L3N1cD4tMngrMuS4iu+8jDxicj7iiLRQ77yIeO+8jDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhYYWlIRkszQUFBQkR1U21iMGc1MDMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFhhaUhGSzNBQUFCRHVTbWIwZzUwMy5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij54KzLvvInvvIxF77yIeO+8jHg8c3VwPjI8L3N1cD4tMngrMu+8iTxicj5QRT0teDxzdXA+Mjwvc3VwPis8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WVdSWFBZWUFBQUJMenRpd0swNzIwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhZV1JYUFlZQUFBQkx6dGl3SzA3MjAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+eDxicj7lgYforr7lrZjlnKjngrlQ77yM4pGg5b2T4oigUEVEPeKIoEJPRj05MMKw5pe277yM55Sx6aKY5oSP5Y+v5b6X4pazUEVE4oi94pazQk9GPGJyPuWImTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZYlIzZHh2QUFBQjNIX2JNSHM4NjkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFliUjNkeHZBQUFCM0hfYk1Iczg2OS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI0NyI+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzREL3JCQUNFMVB4eFlhUll1QkNBQUFCbmZZY0MwSTE1Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEQvckJBQ0UxUHh4WWFSWXVCQ0FBQUJuZlljQzBJMTUyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI2Ij48YnI+4oi0eD08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEQvckJBQ0UxUHh4WWJqcVBxWUFBQUIxMEpFSGtZNzY4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80RC9yQkFDRTFQeHhZYmpxUHFZQUFBQjEwSkVIa1k3NjgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMzQiPu+8jDxicj7iiLUw77yceO+8nDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhZV1JYUFlZQUFBQkx6dGl3SzA3MjAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFlXUlhQWVlBQUFCTHp0aXdLMDcyMC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvIw8YnI+4oi0eD08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WVdBRGdXV0FBQUJ6OFFnUGVzMzYyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhZV0FEZ1dXQUFBQno4UWdQZXMzNjIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMzQiPu+8iOiIjeWOu++8iTxicj7ogIx4PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZV1Fsb0MxQUFBQnpVNVp5ME01ODQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlXUWxvQzFBQUFCelU1WnkwTTU4NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIzNCI+77ycPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFlXUlhQWVlBQUFCTHp0aXdLMDcyMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WVdSWFBZWUFBQUJMenRpd0swNzIwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPjxicj7iiLTlrZjlnKjngrlQ77yM5YW25Z2Q5qCH5Li6KDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZV1Fsb0MxQUFBQnpVNVp5ME01ODQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlXUWxvQzFBQUFCelU1WnkwTTU4NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIzNCI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzREL3JCQUNFMVB4eFlYUmVZMkFBQUFDQlJnOFJvMDMxNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEQvckJBQ0UxUHh4WVhSZVkyQUFBQUNCUmc4Um8wMzE0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjQyIj4pPGJyPuKRouKIoFBERT3iiKBCT0Y9OTDCsOaXtu+8jDxicj7ov4fngrlF5L2cRUvlnoLnm7Tkuo7mipvniannur/nmoTlr7nnp7DovbTvvIzlnoLotrPkuLpLLjxicj7nlLHpopjmhI/lj6/lvpfvvJrilrNQREXiiL3ilrNFS0TvvIzilrNQREXiiL3ilrNCT0Y8YnI+4oi04pazRUtE4oi94pazQk9GPGJyPuWImTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZYmd5Z01VQUFBQ2xUT3QyMXc3MDYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFliZ3lnTVVBQUFDbFRPdDIxdzcwNi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4NiI+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlhaEtoS1NBQUFCbVYycExSSTYwMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WWFoS2hLU0FBQUJtVjJwTFJJNjAwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI2Ij48YnI+4oi0PGk+eDwvaT7vvJ3CsTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZWHc5TzBZQUFBQnNrU2c0bHM4ODQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlYdzlPMFlBQUFCc2tTZzRsczg4NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNCI+Ljxicj7iiLUw77ycPGk+eDwvaT7vvJw8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WVdSWFBZWUFBQUJMenRpd0swNzIwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhZV1JYUFlZQUFBQkx6dGl3SzA3MjAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMPGk+eDwvaT7vvJ3iiJI8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WVh3OU8wWUFBQUJza1NnNGxzODg0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZWHc5TzBZQUFBQnNrU2c0bHM4ODQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPuiIjeWOuzxicj7ogIw8aT54PC9pPu+8nTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZWHc5TzBZQUFBQnNrU2c0bHM4ODQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlYdzlPMFlBQUFCc2tTZzRsczg4NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNCI+77ycPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFlXUlhQWVlBQUFCTHp0aXdLMDcyMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WVdSWFBZWUFBQUJMenRpd0swNzIwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7iiLTlrZjlnKjngrlQ77yM5YW25Z2Q5qCH5Li6KDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMS9yQkFDRkZQeHhZWHc5TzBZQUFBQnNrU2c0bHM4ODQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlYdzlPMFlBQUFCc2tTZzRsczg4NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNCI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFlXRFVLZVdBQUFDQW1HaWlmVTk3Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WVdEVUtlV0FBQUNBbUdpaWZVOTc2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjQyIj4pPGJyPue7vOS4iuaJgOi/sOWtmOWcqOeCuVDmu6HotrPmnaHku7bvvIzlhbblnZDmoIfkuLooPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlXUWxvQzFBQUFCelU1WnkwTTU4NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WVdRbG9DMUFBQUJ6VTVaeTBNNTg0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjM0Ij7vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEQvckJBQ0UxUHh4WVhSZVkyQUFBQUNCUmc4Um8wMzE0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80RC9yQkFDRTFQeHhZWFJlWTJBQUFBQ0JSZzhSbzAzMTQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDIiPinvvIwoPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IxL3JCQUNGRlB4eFlYdzlPMFlBQUFCc2tTZzRsczg4NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjEvckJBQ0ZGUHh4WVh3OU8wWUFBQUJza1NnNGxzODg0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0Ij7vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4WVdEVUtlV0FBQUNBbUdpaWZVOTc2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhZV0RVS2VXQUFBQ0FtR2lpZlU5NzYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDIiPikuPGJyPuaVhemAiUTjgII8L3A+