本课配套习题挑战模式1/5
如图,△AOB的顶点A、B在二次函数y=−x2+x+的图象上,又点A、B分别在y轴和x轴上,tan∠ABO=1. 过点A作AC∥BO交上述函数图象于点C,点P在上述函数图象上,当△POC与△ABO相似时,点P的坐标为( ).
A: (0,)或(3,0) |
B: (0,)或(3,0) |
C: (0,)或(4,0) |
D: (0,)或(4,0) |
- 提示1:PHA+6aaW5YWI55SxQUPiiKVCT+S6pOS4iui/sOWHveaVsOWbvuixoeS6jueCuUPlj6/ku6XmsYLlh7pD55qE5Z2Q5qCH77yM5o6l552A5b6X5YiwQUPjgIFBT+OAgU9D55qE6ZW/5bqm77yM55Sx5q2k5Lmf5Y+v5Lul5rGC5Ye6YueahOWAvO+8jOagueaNruaKm+eJqee6v+eahOWvueensOaAp+WPr+S7peaxguWHuuaKm+eJqee6v+S4jnjovbTnmoTlj6bkuIDkuqTngrnkuLpE55qE5Z2Q5qCH77yM5LuO6ICM5b6X5YiwQ0TnmoTplb/luqbvvIzmjqXnnYDliKnnlKjli77ogqHlrprnkIbnmoTpgIblrprnkIbor4HmmI7iiKBPQ0Q9OTDCsO+8jOaYk+W+l1J04pazT0NB4oi9UnTilrNBQk/vvIxSdOKWs09EQ+KIvVJ04pazQUJP77yM5rGC5Ye6UOeahOWdkOaghy48L3A+
- 答案:Qg==
PHA+6Kej77ya4oi1QUPiiKVCT+S6pOS4iui/sOWHveaVsOWbvuixoeS6jueCuUPvvIw8YnI+4oi06K6+PGk+QzwvaT4oPGk+eDwvaT7vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFYeHh2Y3pBQUFjS2lvcW5yTTA0Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVh4eHZjekFBQWNLaW9xbnJNMDQ2LnBuZyIgYWx0PSLpnZLmnpzlrabpmaIiIGFsaWduPSJsZWZ0IiBoZWlnaHQ9IjExOCIgaHNwYWNlPSIxMiIgd2lkdGg9IjE4MiI+KTxicj7iiLTiiJI8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVNqOHFMVEFBQUJKeXB1SGU4NTkxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRU2o4cUxUQUFBQkp5cHVIZTg1OTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+PGk+eDwvaT48c3VwPjI8L3N1cD4rPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFTQWdrM19BQUFCRG1JZ1phYzg3Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVNBZ2szX0FBQUJEbUlnWmFjODc3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPjxpPng8L2k+KzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMPGJyPuino+W+lzxpPng8L2k+PHN1Yj4xPC9zdWI+77ydMO+8jDxpPng8L2k+PHN1Yj4yPC9zdWI+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7iiLU8aT5DPC9pPig8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPik8YnI+4oi0PGk+QUM8L2k+77ydPGk+QU88L2k+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7moLnmja7li77ogqHlrprnkIblvpfvvJo8aT5PQzwvaT7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUMvckJBQ0ZGUHh4UVhETE5wS0FBQUJzWHpBdmhjMTA0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BQy9yQkFDRkZQeHhRWERMTnBLQUFBQnNYekF2aGMxMDQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPu+8jDxicj7orr7mipvniannur88aT55PC9pPu+8neKIkjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRU2o4cUxUQUFBQkp5cHVIZTg1OTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFTajhxTFRBQUFCSnlwdUhlODU5MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij48aT54PC9pPjxzdXA+Mjwvc3VwPis8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVNBZ2szX0FBQUJEbUlnWmFjODc3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRU0FnazNfQUFBQkRtSWdaYWM4NzcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+PGk+eDwvaT4rPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPuS4jnjovbTnmoTlj6bkuIDkuqTngrnkuLpE77yMPGJyPuWPr+W+l++8jETvvIgz77yMMO+8iTxicj7iiLTmoLnmja7kuKTngrnpl7TnmoTot53nprvlhazlvI/lvpfvvJo8aT5DRDwvaT7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVhRQllfTkFBQUR2UFN2SHF3MzE1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRWFFCWV9OQUFBRHZQU3ZIcXczMTUucG5nIiBoZWlnaHQ9IjYyIiB3aWR0aD0iMTcwIj7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUMvckJBQ0ZGUHh4UVhETE5wS0FBQUJzWHpBdmhjMTA0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BQy9yQkFDRkZQeHhRWERMTnBLQUFBQnNYekF2aGMxMDQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPjxicj7vvIzlj4hPRD0z77yMT0M9PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FDL3JCQUNGRlB4eFFYRExOcEtBQUFCc1h6QXZoYzEwNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUMvckJBQ0ZGUHh4UVhETE5wS0FBQUJzWHpBdmhjMTA0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0Ij48YnI+77yMPGJyPuKItE9DPHN1cD4yPC9zdXA+K0NEPHN1cD4yPC9zdXA+PU9EPHN1cD4yPC9zdXA+77yM4oi04oigT0NEPTkwwrA8YnI+5piT5b6X77yMUnTilrNPQ0HiiL1SdOKWs0FCT++8jFJ04pazT0RD4oi9UnTilrNBQk88YnI+5q2k5pe2RO+8jFDph43lkIjvvIxB5LiOUOmHjeWQiO+8jDxicj7iiLQ8aT5QPC9pPigw77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPinmiJZQ77yIM++8jDDvvIkuPGJyPuaVhemAiULjgII8L3A+
本课配套习题挑战模式2/5
如图,在平面直角坐标系中,二次函数y=2x2-16x+30的图象经过4(3,0),B(5,0)两点,顶点为C. 若二次函数图象与y轴交于点D,在y轴正半轴上有一点P(0,n),并且以点P、D、A为顶点的三角形与以点A、C、D为顶点的三角形相似,则n的值为()。
A: 22 |
B: 23 |
C: 24 |
D: 25 |
- 提示1:PHA+5L2c6L6F5Yqp57q/6L+e5o6lREPvvIxEQe+8jFBB77yM5Y+v55yL5Ye64pazRFBB4oi94pazQ0FE77yM5Y2zQVDiiKVEQ++8jOi/h0PngrnlkJF56L205byV5Z6C57q/5Z6C6Laz5Li6SO+8jOaOqOWHuuKWs0RDSOKIveKWs1BBT+e7k+WQiOWdkOagh+axguWHuue6v+autemVv+W6puagueaNruebuOS8vOS4ieinkuW9ouefpeivhuWIqeeUqOWvueW6lOi+ueaIkOavlOS+i+WBmumimOWNs+WPrzwvcD4=
- 答案:Qw==
PHA+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFJld1YwV2pBQUFxQUhYUWdTMDgzMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UmV3VjBXakFBQXFBSFhRZ1MwODMwLnBuZyIgYWx0PSLpnZLmnpzlrabpmaIiIGFsaWduPSJsZWZ0IiBoZWlnaHQ9IjE4MSIgaHNwYWNlPSIxMiIgd2lkdGg9IjIxNCI+6Kej77ya55Sx6aKY5oSP5Y+v55+lROeCueWdkOagh+S4uu+8iDDvvIwzMO+8ie+8jOi/nuaOpURD77yMREHvvIxQQe+8jOWPr+eci+WHuuiLpeKWs0RQQeKIveKWs0NBRO+8jOWImeKIoFBBRD3iiKBBREPvvIw8YnI+5Y2zQVDiiKVEQ++8jOi/h0PngrnlkJF56L205byV5Z6C57q/5Z6C6Laz5Li6SO+8jDxicj7ljbPilrNEQ0jiiL3ilrNQQU88YnI+4oeSPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFJmQ2I0QjRBQUFCWnplMF9HODc4MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UmZDYjRCNEFBQUJaemUwX0c4NzgxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIwIj49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFJmQ044RVlBQUFCaHUtTHFmYzAxOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4UmZDTjhFWUFBQUJodS1McWZjMDE5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij48YnI+55Sx5Zu+5Y+v55+lREg9MzLvvIxDSD0077yMQU89Mzxicj7lvpdPUD0yNO+8jDxicj7ljbNQ54K55Z2Q5qCH5Li677yIMO+8jDI077yJ77ybPGJyPuKItG49MjQuPGJyPuaVhemAiUPjgII8L3A+
本课配套习题挑战模式3/5
如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B. 已知点P是二次函数y=-x2+3x图象在对称轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点. 若以CD为直角边的△PCD与△OCD相似,则点P的坐标是( )
A: (2,2)、(,)、(,) |
B: (2,2)、(,)、(,) |
C: (2,2)、(,)、(,) |
D: (2,2)、(,)、(,) |
- 提示1:PHA+6K6+RO+8iDDvvIwyYe+8ie+8jOWImeebtOe6v0NE6Kej5p6Q5byP5Li6eT0tMngrMmHvvIzlj6/nn6VD77yIYe+8jDDvvInvvIzku6VDROS4uuebtOinkui+ueeahOKWs1BDROS4juKWs09DROebuOS8vO+8jOWIhuS4uuKIoENEUD05MMKw5ZKM4oigRENQPTkwwrDkuKTnp43mg4XlhrXvvIzliIbliKvmsYJQ54K55Z2Q5qCH5Y2z5Y+vLjwvcD4=
- 答案:RA==
PHA+6Kej77ya6K6+RO+8iDDvvIwyYe+8ie+8jOWImeebtOe6v0NE6Kej5p6Q5byP5Li6eT0tMngrMmHvvIzlj6/nn6VD77yIYe+8jDDvvInvvIzljbNPQ++8mk9EPTHvvJoy77yMPGJyPuWImU9EPTJh77yMT0M9Ye+8jOagueaNruWLvuiCoeWumueQhuWPr+W+l++8mkNEPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSdVR5S2FnQUFBQms5MmNScEk1ODEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFJ1VHlLYWdBQUFCazkyY1JwSTU4MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+Ye+8jDxicj7ku6VDROS4uuebtOinkui+ueeahOKWs1BDROS4juKWs09DROebuOS8vO+8jDxicj7ikaAg4oigQ0RQPTkwwrDml7bvvIzoi6VQRO+8mkRDPU9D77yaT0Q9Me+8mjLvvIzliJlQRD08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UnVBSWpFNEFBQUJtbThLZC1zNjYwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSdUFJakU0QUFBQm1tOEtkLXM2NjAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPmHvvIzorr5Q55qE5qiq5Z2Q5qCH5piveO+8jOWImVDngrnnurXlnZDmoIfmmK8teDxzdXA+Mjwvc3VwPiszeO+8jDxicj7moLnmja7popjmhI/lvpfvvJo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4UnZDSkJ1ZEFBQUota2ZYb2E0NDg3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSdkNKQnVkQUFBSi1rZlhvYTQ0ODcucG5nIiBoZWlnaHQ9IjEwNCIgd2lkdGg9IjM4MiI+77yMPC9wPg==
本课配套习题挑战模式4/5
如图所示,二次函数y=x2-x-4的图象与x轴交于点A和点B(A、B分别位于原点O的两侧),与y轴的负半轴交于点C,且tan∠OAC=2,AB=CB=5. 直线BC上确定一点P,使△PAB和△OBC相似,写出满足条件的点P的坐标正确的是().
A: P1(-2,-),P2(,-) |
B: P1(-2,),P2(,) |
C: P1(-2,-),P2(,) |
D: P1(-2,),P2(,-) |
- 提示1:PHA+55Sx5LqO4pazT0JD5piv55u06KeS5LiJ6KeS5b2i77yM55Sx5LqO54K5UOWcqENC55qE5bu26ZW/57q/5pe24oigUEJB77yeOTDCsO+8jOeCuVDlnKjlsITnur9CQ+S4iuaXtu+8jOKIoFBCQe+8nDkwwrDvvIzmiYDku6XlvZPilrNQQULlkozilrNPQkPnm7jkvLzml7bvvIxQ54K55Y+q5Y+v6IO95Zyo5bCE57q/QkPkuIrvvIzliIbkuKTnp43mg4XlhrXov5vooYzorqjorrrvvJrikaBQQeKKpUFC77yM55Sx4pazQ09C4oi94pazUEFC77yM5YiX5Ye65q+U5L6L5byP77yM5rGC5Ye6QVA9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFI2aGZZenpBQUFCVTFVMDNOODQ3Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UjZoZll6ekFBQUJVMVUwM044NDcyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIzov5vogIzlvpflh7rngrlQ55qE5Z2Q5qCH77yb4pGh5b2TQVDiiqVQQuaXtu+8jOeUseKWs0NPQuKIveKWs0FQQu+8jOWIl+WHuuavlOS+i+W8j++8jOaxguWHulBCPTMuIOWGjei/h+eCuVA8c3ViPjI8L3N1Yj7kvZxQPHN1Yj4yPC9zdWI+ROKKpUFC5LqORO+8jOeUseWwhOW9seWumueQhuW+l+WHulA8c3ViPjI8L3N1Yj5CPHN1cD4yPC9zdXA+PUJEw5dCQe+8jOaxguWHukJE55qE5YC877yM6L+b6ICM5b6X5Ye654K5UOeahOWdkOaghy48L3A+
- 答案:QQ==
PHA+6Kej77ya6K6+T0I9a++8jOWImUHvvIhrLTXvvIww77yJ77yMQu+8iGvvvIww77yJ77yMQ++8iDDvvIwyay0xMO+8iS48YnI+5Zyo4pazQk9D5Lit77yM4oi14oigQk9DPTkwwrDvvIw8YnI+4oi0QkM8c3VwPjI8L3N1cD49T0M8c3VwPjI8L3N1cD4rT0I8c3VwPjI8L3N1cD7vvIzljbMyNT3vvIgyay0xMO+8iTxzdXA+Mjwvc3VwPitrPHN1cD4yPC9zdXA+77yMPGJyPuino+W+l2s8c3ViPjE8L3N1Yj49M++8jGs8c3ViPjI8L3N1Yj49Ne+8iOiIjeWOu++8ie+8jDxicj7iiLRB77yILTLvvIww77yJ77yMQu+8iDPvvIww77yJ77yMQ++8iDDvvIwtNO+8iS48YnI+6K6+55u057q/QkPnmoTop6PmnpDlvI/kuLp5PWt4K23vvIw8YnI+5YiZPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFI3Q004VmNBQUFERlRsaGFPVTAwNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UjdDTThWY0FBQURGVGxoYU9VMDA2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEwMiI+77yMPGJyPuino+W+lzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSN0NHR3oyQUFBQy1NS2N6TTgxMDcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFI3Q0dHejJBQUFDLU1LY3pNODEwNy5wbmciIGhlaWdodD0iNjIiIHdpZHRoPSI3NCI+77yMPGJyPuKItOebtOe6v0JD55qE6Kej5p6Q5byP5Li677yaeT08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4Ul96Rzk3MEFBQUJTVTFGdzdvNjY5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSX3pHOTcwQUFBQlNVMUZ3N282NjkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+eC0077ybPGJyPjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSLWhUSDEwQUFBbGUxMmN1YW83NzAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFItaFRIMTBBQUFsZTEyY3Vhbzc3MC5wbmciIGFsdD0i6Z2S5p6c5a2m6ZmiIiBhbGlnbj0ibGVmdCIgaGVpZ2h0PSIyNjQiIGhzcGFjZT0iMTIiIHdpZHRoPSIyNTIiPuiuvueCuVDnmoTlnZDmoIfkuLrvvIh477yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFJfekc5NzBBQUFCU1UxRnc3bzY2OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4Ul96Rzk3MEFBQUJTVTFGdzdvNjY5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPngtNO+8iS48YnI+4pGgIFBB4oqlQULml7bvvIxPQ+KIpUFQ77yM4pazQ09C4oi94pazUEFC77yMPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSLVFxRUpHQUFBQmtVemtYLUU4NjYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFItUXFFSkdBQUFCa1V6a1gtRTg2Ni5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOCI+PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSLWl1TjNsQUFBQmpXY21Gdm8wMjEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFItaXVOM2xBQUFCaldjbUZ2bzAyMS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOSI+77yM5Y2zPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFJfVGgzdjhBQUFCaDNIU1RNZzgwNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4Ul9UaDN2OEFBQUJoM0hTVE1nODA3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE3Ij49PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFRPalpiazNBQUFCTFVIeEhNbzM3Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4VE9qWmJrM0FBQUJMVUh4SE1vMzcyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7op6PlvpdBUD08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UjZoZll6ekFBQUJVMVUwM044NDcyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSNmhmWXp6QUFBQlUxVTAzTjg0NzIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPu+8jDxicj7iiLQt77yIPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFJfekc5NzBBQUFCU1UxRnc3bzY2OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4Ul96Rzk3MEFBQUJTVTFGdzdvNjY5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPngtNO+8iT08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UjZoZll6ekFBQUJVMVUwM044NDcyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSNmhmWXp6QUFBQlUxVTAzTjg0NzIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPu+8jDxicj7op6Plvpd4PS0y77yMPGJyPuKItFA8c3ViPjE8L3N1Yj7vvIgtMu+8jC08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UjZoZll6ekFBQUJVMVUwM044NDcyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSNmhmWXp6QUFBQlUxVTAzTjg0NzIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPu+8ie+8mzxicj7ikaEgQVDiiqVQQuaXtu+8jOKWs0NPQuKIveKWs0FQQu+8jDxicj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4VE9TTy01UUFBQUJkdU5MUHRNNzQ4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhUT1NPLTVRQUFBQmR1TkxQdE03NDgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTkiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VFBpRXR4N0FBQUJqbEF5a1FZMzM0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhUUGlFdHg3QUFBQmpsQXlrUVkzMzQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTgiPu+8jOWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhUVFF6cnA4QUFBQmJ1ZFNvSEE0MjAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFRUUXpycDhBQUFCYnVkU29IQTQyMC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOCI+PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhUVHlfLV9LQUFBQThkaHYyek0zMTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFRUeV8tX0tBQUFBOGRodjJ6TTMxNC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvIw8YnI+6Kej5b6XUEI9My48YnI+6L+H54K5UDxzdWI+Mjwvc3ViPuS9nFA8c3ViPjI8L3N1Yj5E4oqlQULkuo5E77yM5YiZUDxzdWI+Mjwvc3ViPkI8c3VwPjI8L3N1cD49QkTDl0JB77yMPGJyPuino+W+l0JEPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhUU3dCdVliQUFBQlB4M0tBQzQwMjcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFRTd0J1WWJBQUFCUHgzS0FDNDAyNy5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvIw8YnI+4oi0T0Q9My08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4VFN3QnVZYkFBQUJQeDNLQUM0MDI3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhUU3dCdVliQUFBQlB4M0tBQzQwMjcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSN2d4R3lsQUFBQlBnRUlVMGs0MTgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFI3Z3hHeWxBQUFCUGdFSVUwazQxOC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvIzljbN4PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSN2d4R3lsQUFBQlBnRUlVMGs0MTgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFI3Z3hHeWxBQUFCUGdFSVUwazQxOC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvIw8YnI+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFJfekc5NzBBQUFCU1UxRnc3bzY2OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4Ul96Rzk3MEFBQUJTVTFGdzdvNjY5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPngtND08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4Ul96Rzk3MEFBQUJTVTFGdzdvNjY5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSX3pHOTcwQUFBQlNVMUZ3N282NjkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+w5c8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UjdneEd5bEFBQUJQZ0VJVTBrNDE4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSN2d4R3lsQUFBQlBnRUlVMGs0MTgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+LTQ9LTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSNlNfaTFJQUFBQlRaZmVLMHczODcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFI2U19pMUlBQUFCVFpmZUswdzM4Ny5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yMPGJyPuKItFA8c3ViPjI8L3N1Yj7vvIg8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUQvckJBQ0ZGUHh4UjdneEd5bEFBQUJQZ0VJVTBrNDE4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSN2d4R3lsQUFBQlBnRUlVMGs0MTgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMLTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80QS9yQkFDRTFQeHhSNlNfaTFJQUFBQlRaZmVLMHczODcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFI2U19pMUlBQUFCVFpmZUswdzM4Ny5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yJLjxicj7nu7zkuIrlj6/nn6XvvIzmu6HotrPmnaHku7bnmoTngrlQ55qE5Z2Q5qCH5Li6UDxzdWI+MTwvc3ViPu+8iC0y77yMLTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSNmhmWXp6QUFBQlUxVTAzTjg0NzIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFI2aGZZenpBQUFCVTFVMDNOODQ3Mi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yJ77yMUDxzdWI+Mjwvc3ViPu+8iDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRC9yQkFDRkZQeHhSN2d4R3lsQUFBQlBnRUlVMGs0MTgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FEL3JCQUNGRlB4eFI3Z3hHeWxBQUFCUGdFSVUwazQxOC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvIwtPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRBL3JCQUNFMVB4eFI2U19pMUlBQUFCVFpmZUswdzM4Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEEvckJBQ0UxUHh4UjZTX2kxSUFBQUJUWmZlSzB3Mzg3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIkuPGJyPuaVhemAiUHjgII8L3A+
本课配套习题挑战模式5/5
如图,已知二次函数y=(x+2)(ax+b)的图象过点A(-4,3),B(4,4). 若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,当以P、H、D为顶点的三角形与△ABC相似时,写出点P的坐标正确的是( ).
A: P1(-,)、P2(-,) |
B: P1(-,)、P2(-,) |
C: P1(-,)、P2(-,) |
D: P1(-,)、P2(-,) |
- 提示1:PHA+5bCG54K5QeWPiueCuULnmoTlnZDmoIfku6PlhaXlh73mlbDop6PmnpDlvI/vvIzlvpflh7ph44CBYueahOWAvO+8jOe7p+iAjOWPr+W+l+WHuuWHveaVsOino+aekOW8j++8mzwvcD4=
- 提示2:PHA+5YiG5Lik56eN5oOF5Ya16L+b6KGM6K6o6K6677yM4pGg4pazREhQ4oi94pazQkNB77yM4pGh4pazUEhE4oi94pazQkNB77yM54S25ZCO5YiG5Yir5Yip55So55u45Ly85LiJ6KeS5b2i5a+55bqU6L655oiQ5q+U5L6L55qE5oCn6LSo5rGC5Ye654K5UOeahOWdkOaghy48L3A+
- 答案:Qw==
PHA+6Kej77ya55Sx6aKY5oSP5b6X77yM5Ye95pWw5Zu+6LGh57uP6L+H54K5Qe+8iC0077yMM++8ie+8jELvvIg077yMNO+8ie+8jDxicj7mlYXlj6/lvpfvvJo8YnI+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRCL3JCQUNFMVB4eFVPVHJUWGJBQUFHTU9JUUk5ODAwMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VU9UclRYYkFBQUdNT0lRSTk4MDAzLnBuZyIgaGVpZ2h0PSI4MyIgd2lkdGg9IjIxNyI+77yMPC9wPjx0YWJsZSBjbGFzcz0iTXNvTm9ybWFsVGFibGUiIHN0eWxlPSJib3JkZXItY29sbGFwc2U6Y29sbGFwc2UiIGJvcmRlcj0iMCIgY2VsbHBhZGRpbmc9IjAiIGNlbGxzcGFjaW5nPSIwIj48dGJvZHk+PHRyPjx0ZCBzdHlsZT0id2lkdGg6LjNwdDtwYWRkaW5nOjBjbSAwY20gMGNtIDBjbSIgbm93cmFwPSJub3dyYXAiIHdpZHRoPSIwIj48YnI+PC90ZD48dGQgc3R5bGU9IndpZHRoOi4zcHQ7cGFkZGluZzowY20gMGNtIDBjbSAwY20iIG5vd3JhcD0ibm93cmFwIiB3aWR0aD0iMCI+PGJyPjwvdGQ+PHRkIHN0eWxlPSJ3aWR0aDouM3B0O3BhZGRpbmc6MGNtIDBjbSAwY20gMGNtIiBub3dyYXA9Im5vd3JhcCIgd2lkdGg9IjAiPjxicj48L3RkPjwvdHI+PC90Ym9keT48L3RhYmxlPjxwPuino+W+l++8mjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVUERJMlNJQUFBQ3lYV0hpM1EyNzQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVQREkyU0lBQUFDeVhXSGkzUTI3NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI3NyI+77yMPGJyPuKItOS6jOasoeWHveaVsOWFs+ezu+W8j+S4uu+8mnk9PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFRuQU0tWjFBQUFCWEN6RV94STc1Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VG5BTS1aMUFBQUJYQ3pFX3hJNzUyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIh4KzLvvInvvIgxM3gtMjDvvIkuPGJyPuiuvueCuVDlnZDmoIfkuLrvvIh477yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFRuQU0tWjFBQUFCWEN6RV94STc1Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VG5BTS1aMUFBQUJYQ3pFX3hJNzUyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIh4KzLvvInvvIgxM3gtMjDvvInvvInvvIzliJlQSD08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VG5BTS1aMUFBQUJYQ3pFX3hJNzUyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhUbkFNLVoxQUFBQlhDekVfeEk3NTIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPu+8iHgrMu+8ie+8iDEzeC0yMO+8ie+8jEhEPS14KzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVUFRsLWV1QUFBQlpHeVRYeTgxNjkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVQVGwtZXVBQUFCWkd5VFh5ODE2OS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yMPGJyPuKRoCDilrNESFDiiL3ilrNCQ0HvvIzliJk8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VU9pRlFaNUFBQUJpbXhoSU5NOTQxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVT2lGUVo1QUFBQmlteGhJTk05NDEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTkiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VU94SVlvdEFBQUJjMUlnTlVnNTUwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVT3hJWW90QUFBQmMxSWdOVWc1NTAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjAiPu+8jOWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVUFFQVEJmQUFBRE5JbjZsZUU0OTYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRCL3JCQUNFMVB4eFVQUVBUQmZBQUFETkluNmxlRTQ5Ni5wbmciIGhlaWdodD0iNjIiIHdpZHRoPSIxNDciPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VVNRM0dZLUFBQUNXbTZxMm1nNjI4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVU1EzR1ktQUFBQ1dtNnEybWc2MjgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDAiPu+8jDxicj7op6PlvpfvvJp4PS08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VU9DbFVRN0FBQUJZYmxNTU1VNjMxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVT0NsVVE3QUFBQllibE1NTVU2MzEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPuaIlng9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVQVGwtZXVBQUFCWkd5VFh5ODE2OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VVBUbC1ldUFBQUJaR3lUWHk4MTY5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIjlm6DkuLrngrlQ5Zyo56ys5LqM6LGh6ZmQ77yM5pWF6IiN5Y6777yJ77ybPGJyPuS7o+WFpeWPr+W+l1BIPTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVS2k3SGktQUFBQlZHTzZsS0k5OTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVLaTdIaS1BQUFCVkdPNmxLSTk5MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yM5Y2zUDxzdWI+MTwvc3ViPuWdkOagh+S4uu+8iC08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VU9DbFVRN0FBQUJZYmxNTU1VNjMxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVT0NsVVE3QUFBQllibE1NTVU2MzEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPu+8jDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVS2k3SGktQUFBQlZHTzZsS0k5OTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVLaTdIaS1BQUFCVkdPNmxLSTk5MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yJ77ybPGJyPuKRoSDilrNQSETiiL3ilrNCQ0HvvIzliJk8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VVNBV0ZTd0FBQUJkRFJOQXVFNjEzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVU0FXRlN3QUFBQmREUk5BdUU2MTMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTkiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VVRENVJwbUFBQUJrS3JNM1dBMjM5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVVEQ1UnBtQUFBQmtLck0zV0EyMzkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjAiPu+8jOWNszxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVU0FYU09OQUFBRE0yaWRaYUEzMzcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVTQVhTT05BQUFETTJpZFphQTMzNy5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNDciPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VVR3bEtkakFBQUNZU2hnSVZvNDU2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVVHdsS2RqQUFBQ1lTaGdJVm80NTYucG5nIiBoZWlnaHQ9IjYyIiB3aWR0aD0iNDAiPu+8jDxicj7op6PlvpfvvJp4PS08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VU9UUmRra0FBQUJhaTViaGtzNDA0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVT1RSZGtrQUFBQmFpNWJoa3M0MDQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPuaIlng9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVQVGwtZXVBQUFCWkd5VFh5ODE2OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VVBUbC1ldUFBQUJaR3lUWHk4MTY5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIjlm6DkuLrngrlQ5Zyo56ys5LqM6LGh6ZmQ77yM5pWF6IiN5Y6777yJLjxicj7ku6PlhaXlj6/lvpdQSD08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VU96NEt0Q0FBQUJxQWxYSWVrNjExLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVT3o0S3RDQUFBQnFBbFhJZWs2MTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPu+8jOWNs1A8c3ViPjI8L3N1Yj7lnZDmoIfkuLrvvJrvvIgtPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVPVFJka2tBQUFCYWk1YmhrczQwNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VU9UUmRra0FBQUJhaTViaGtzNDA0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VU96NEt0Q0FBQUJxQWxYSWVrNjExLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVT3o0S3RDQUFBQnFBbFhJZWs2MTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPu+8iee7vOS4iuaJgOi/sO+8jOa7oei2s+adoeS7tueahOeCuVDmnInkuKTkuKrvvIzljbNQPHN1Yj4xPC9zdWI+77yILTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qi9yQkFDRTFQeHhVT0NsVVE3QUFBQllibE1NTVU2MzEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRCL3JCQUNFMVB4eFVPQ2xVUTdBQUFCWWJsTU1NVTYzMS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVLaTdIaS1BQUFCVkdPNmxLSTk5MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUUvckJBQ0ZGUHh4VUtpN0hpLUFBQUJWR082bEtJOTkxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvInjgIFQPHN1Yj4yPC9zdWI+77yILTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BRS9yQkFDRkZQeHhVT1RSZGtrQUFBQmFpNWJoa3M0MDQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0FFL3JCQUNGRlB4eFVPVFJka2tBQUFCYWk1YmhrczQwNC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRCL3JCQUNFMVB4eFVPejRLdENBQUFCcUFsWEllazYxMS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEIvckJBQ0UxUHh4VU96NEt0Q0FBQUJxQWxYSWVrNjExLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvIkuPGJyPuaVhemAiUPjgII8L3A+