本课配套习题挑战模式1/5
如图,在Rt△ABC中,∠ACB=90°,∠A=30°,,BC的中点为D. 将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG. 在旋转过程中,DG的最大值是( )
A: 5 |
B: 6 |
C: 7 |
D: 8 |
- 提示1:PHA+6Kej55u06KeS5LiJ6KeS5b2i5rGC5Ye6QULjgIFCQ++8jOWGjeaxguWHukNE77yM6L+e5o6lQ0fvvIzmoLnmja7nm7Top5LkuInop5LlvaLmlpzovrnkuIrnmoTkuK3nur/nrYnkuo7mlpzovrnnmoTkuIDljYrmsYLlh7pDR++8jOeEtuWQjuagueaNruS4ieinkuW9oueahOS7u+aEj+S4pOi+ueS5i+WSjOWkp+S6juesrOS4iei+ueWIpOaWreWHukTjgIFD44CBR+S4ieeCueWFsee6v+aXtkRH5pyJ5pyA5aSn5YC877yM5YaN5Luj5YWl5pWw5o2u6L+b6KGM6K6h566X5Y2z5Y+v5b6X6KejLjwvcD4=
- 答案:Qg==
PGRpdj7op6PvvJriiLXiiKBBQ0I9OTDCsO+8jOKIoEE9MzDCsO+8jDxicj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvOTIvckJBQ0ZGTU1aOXJpVDhuaEFBQUVCM3dXSHZRNDMwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC85Mi9yQkFDRkZNTVo5cmlUOG5oQUFBRUIzd1dIdlE0MzAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQ4Ij7vvIw8L2Rpdj48ZGl2PjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC85Mi9yQkFDRkZNTVo5cWhRUjRSQUFBRUJsSGlPYUE1ODYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzkyL3JCQUNGRk1NWjlxaFFSNFJBQUFFQmxIaU9hQTU4Ni5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNDMiPuKItUJD55qE5Lit54K55Li6RO+8jDxicj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvODIvckJBQ0UxTU1aOXVCRkpueUFBQUN6M2xPTTJrODg3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVo5dUJGSm55QUFBQ3ozbE9NMms4ODcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTU0Ij48YnI+6L+e5o6lQ0fvvIziiLXilrNBQkPnu5XngrlD6aG65pe26ZKI5peL6L2s5Lu75oSP5LiA5Liq6KeS5bqm5b6X5Yiw4pazRkVD77yMRUbnmoTkuK3ngrnkuLpH77yMPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVo5dVFMV1AtQUFBRGVYUHNrTFE0ODkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzgyL3JCQUNFMU1NWjl1UUxXUC1BQUFEZVhQc2tMUTQ4OS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMDIiPjxicj7nlLHkuInop5LlvaLnmoTkuInovrnlhbPns7vlvpfvvIxDRCtDR++8nkRH77yMPGJyPuKItETjgIFD44CBR+S4ieeCueWFsee6v+aXtkRH5pyJ5pyA5aSn5YC877yMPGJyPuatpOaXtkRHPUNEK0NHPTIrND02LjwvZGl2PjxkaXY+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzkyL3JCQUNGRk1NWjl1akUzc0VBQUE3cUNIVzZ3QTc1MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvOTIvckJBQ0ZGTU1aOXVqRTNzRUFBQTdxQ0hXNndBNzUwLnBuZyIgaGVpZ2h0PSIxMzMiIHdpZHRoPSIxODUiPjwvZGl2Pg==
本课配套习题挑战模式2/5
在Rt△ABC中,∠ACB=90°,. 点D在边AC上(不与A,C重合),连接BD,若BC=6,将线段AD绕点A旋转,点F始终为BD中点,则线段CF的最大值为( )
A: |
B: |
C: |
D: |
- 提示1:PHA+77yM5Y+WQULnmoTkuK3ngrlN77yM6L+e5o6lTUblkoxDTe+8jDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVotR3pQWkNBQUFBQ1hHR1UwR2s2MzgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzgyL3JCQUNFMU1NWi1HelBaQ0FBQUFDWEdHVTBHazYzOC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI5NiI+77yM5LiUQkM9Nu+8jOiuoeeul+WHukFDPTEy77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzIzLzgyL3JCQUNFMU1NWi1LQUp1dW9BQUFDSFc5UERvODY5My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvODIvckJBQ0UxTU1aLUtBSnV1b0FBQUNIVzlQRG84NjkzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjY0Ij4uIE3kuLpBQuS4reeCue+8jOWImTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVotT0JWUjMyQUFBQ09Tdy0tcDA2MDMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzIzLzgyL3JCQUNFMU1NWi1PQlZSMzJBQUFDT1N3LS1wMDYwMy5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI2NyI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzkzL3JCQUNGRk1NWi1QRGhhSXNBQUFDZ1V3Q2hTRTI4Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvOTMvckJBQ0ZGTU1aLVBEaGFJc0FBQUNnVXdDaFNFMjg3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEwMyI+5b2T5LiU5LuF5b2TTeOAgUbjgIFD5LiJ54K55YWx57q/5LiUTeWcqOe6v+autUNG5LiK5pe2Q0bmnIDlpKc8L3A+
- 答案:Qw==
PGRpdj7op6PvvJrlpoLlm77vvIzlvZM8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvODIvckJBQ0UxTU1aLU93QVIyVUFBQUNCRVo5eHpvNjk0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVotT3dBUjJVQUFBQ0JFWjl4em82OTQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNjkiPuaXtu+8jOWPlkFC55qE5Lit54K5Te+8jOi/nuaOpU1G5ZKMQ03vvIw8L2Rpdj48ZGl2PuKIteKIoEFDQj05MMKw77yMPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzAwLzkzL3JCQUNGRk1NWi1QUkFZLUxBQUFDV1dVWEFEZzU4NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvOTMvckJBQ0ZGTU1aLVBSQVktTEFBQUNXV1VYQURnNTg1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9Ijk0Ij7vvIzkuJRCQz0277yMPC9kaXY+PGRpdj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvODIvckJBQ0UxTU1aLU9pel9qeUFBQUN5Vnk1TGVZNDg2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVotT2l6X2p5QUFBQ3lWeTVMZVk0ODYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTQyIj4uPC9kaXY+PGRpdj7iiLVN5Li6QULkuK3ngrnvvIw8L2Rpdj48ZGl2PuKItDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wMC85My9yQkFDRkZNTVotT1NxRDd6QUFBQ1BYX29la2czNTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzAwLzkzL3JCQUNGRk1NWi1PU3FEN3pBQUFDUFhfb2VrZzM1Mi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI3MSI+77yMPC9kaXY+PGRpdj7iiLU8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvODIvckJBQ0UxTU1aLUtRb0JHeUFBQUNJQU9QNUIwMzI3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVotS1FvQkd5QUFBQ0lBT1A1QjAzMjcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNzEiPu+8jDwvZGl2PjxkaXY+4oi0QUQ9NC4g4oi1TeS4ukFC5Lit54K577yMRuS4ukJE5Lit54K577yMPC9kaXY+PGRpdj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMDAvOTMvckJBQ0ZGTU1aLVNUQXR1eUFBQUNmMzd3bGg4MTU2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wMC85My9yQkFDRkZNTVotU1RBdHV5QUFBQ2YzN3dsaDgxNTYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTAzIj48L2Rpdj48ZGl2PuWmguWbvu+8muKItOW9k+S4lOS7heW9k03jgIFG44CBQ+S4ieeCueWFsee6v+S4lE3lnKjnur/mrrVDRuS4iuaXtkNG5pyA5aSn77yMPC9kaXY+PGRpdj7mraTml7Y8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvODIvckJBQ0UxTU1aLVRTZEFRZUFBQURGQUlpdnVjNDgzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVotVFNkQVFlQUFBREZBSWl2dWM0ODMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTc4Ij4uPC9kaXY+PGRpdj48aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjMvODIvckJBQ0UxTU1aLVRqaUIwYUFBQVdVRGN3UXJ3NTE2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yMy84Mi9yQkFDRTFNTVotVGppQjBhQUFBV1VEY3dRcnc1MTYucG5nIiBoZWlnaHQ9IjIyMyIgd2lkdGg9IjEwMSI+PC9kaXY+
本课配套习题挑战模式3/5
如图,四边形ABCD中,AB=BC=5,BD=9,∠ABC=60°,若点P为四边形ABCD内一点,且,∠APD=120°,则线段PA+PD+PC的最小值为( )
A: 9 |
B: 10 |
C: 11 |
D: 12 |
- 提示1:PHA+6L+e5o6lQUMs4pazQUJD5Li6562J6L654paz44CCPC9wPg==
- 提示2:PHA+5bu26ZW/RFDoh7NR77yM5L2/5b6XQVA9UVAs4pazQVBR5Li6562J6L654pazPC9wPg==
- 提示3:PHA+6L+e5o6lQlHvvIzilrNBQlHiiYzilrNBQ1As6L2s56e757q/5q615L2N572u77yM5YWx57q/5pe25Y+W5pyA5bCP5YC8LjwvcD4=
- 答案:QQ==
PGRpdj7op6PvvJrlpoLlm77vvIzlu7bplb9EUOiHs1HvvIzkvb/lvpdBUD1QQSzov57mjqVBUTwvZGl2PjxkaXY+4oi14oigQVBEPTEyMMKw77yMPC9kaXY+PGRpdj7iiLTiiKBBUFE9NjDCsO+8jOKWs0FQUeS4uuetiei+ueS4ieinkuW9ojwvZGl2PjxkaXY+6L+e5o6lQUPvvIznlLHlt7Lnn6XvvIxBQj1CQ++8jOKIoEFCQz02MMKwPC9kaXY+PGRpdj7iiLTilrNBQkPkuLrnrYnovrnkuInop5LlvaI8L2Rpdj48ZGl2Pui/nuaOpUJR77yM5piT6K+B4pazQUJR4omM4pazQUNQ77yIU0FT77yJPC9kaXY+PGRpdj5DUD1CUSxBUD1QUTwvZGl2PjxkaXY+5Zyo4pazQkRR5Lit77yMQkQmbHQ7QlErRFE9UEMrQVArUEQ8L2Rpdj48ZGl2PuW9k1DlnKhCROS4iuaXtu+8jFBBK1BEK1BD5Y+W5pyA5bCP5YC8OTwvZGl2Pg==
本课配套习题挑战模式4/5
如图,△ABC中,以BC为边的△BCP是等边三角形,∠CAB =( )时,AP取得最大值。
A: 60° |
B: 90° |
C: 120° |
D: 150° |
- 提示1:PHA+5LulQVDkuLrovrnkvZznrYnovrnkuInop5LlvaJBUFEs6L+e5o6lQlE8L3A+
- 提示2:PHA+4pazUENB4omM4pazUEJRLEFDPUJRLEFQPUFRPC9wPg==
- 提示3:PHA+54K5Que6v+autUFR5LiK5pe25Y+W5b6X5pyA5aSn5YC8PC9wPg==
- 答案:Qw==
PGRpdj7op6M65LulQVDkuLrovrnmnoTpgKDnrYnovrnilrNBUFHvvIzov57mjqVCUTwvZGl2PjxkaXY+5piT5b6X4pazUEFD4omM4pazUFFCKFNBUyk8L2Rpdj48ZGl2PkFDPVFCLCBBUD1BUTwvZGl2PjxkaXY+5LulQUIsQUMsQVDkuLrovrnplb/nu4TmiJDilrNBQlE8L2Rpdj48ZGl2PuW9k0EsQixR5LiJ54K55YWx57q/5pe277yMQVHlj5blvpfmnIDlpKflgLw8L2Rpdj48ZGl2PuKIoEFCUT0xODDCsDwvZGl2PjxkaXY+4oigQUJQK+KIoFBCUT0xODDCsDwvZGl2PjxkaXY+4oigUENBPeKIoFBCUTwvZGl2PjxkaXY+4oigQUJQK+KIoFBDQT0xODDCsDwvZGl2PjxkaXY+5Zyo5Zub6L655b2iQUJQQ+S4re+8jOKIoENQQj02MMKwPC9kaXY+PGRpdj7iiKBDQUI9MzYwwrAtKOKIoEFCUCviiKBQQ0Er4oigQ1BCKT0xMjDCsDwvZGl2PjxkaXY+5Y2zQ0FCPTEyMMKw5pe277yMQVDlj5blvpfmnIDlpKflgLw8L2Rpdj48ZGl2PjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wNC8wNS9yQkFDRkZNTzBVdURmUUh4QUFBd2hSajZ4bnc3NTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA0LzA1L3JCQUNGRk1PMFV1RGZRSHhBQUF3aFJqNnhudzc1Mi5wbmciIGhlaWdodD0iMjIyIiB3aWR0aD0iMTkzIj48L2Rpdj4=
本课配套习题挑战模式5/5
如图,正方形ABCD内一点E,E到A、B、C三点的距离之和的最小值为,则正方形的边长为( )
A: 2 |
B: 3 |
C: 4 |
D: 5 |
- 提示1:PHA+5LulQeS4uuaXi+i9rOS4reW/g++8jOWwhuKWs0FCReaXi+i9rDYwwrDlvpfliLDilrNBTU7vvIzov55ORe+8jE1C77yM5qC55o2u5peL6L2s55qE5oCn6LSo5b6XTU49QkXvvIxBTj1BRe+8jOKIoE5BRT02MMKw77yM5YiZ4pazQU5F5Li6562J6L655LiJ6KeS5b2i77yM5b6XQUU9TkU8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMjYvRkIvckJBQ0UxTU8wVWZBME82VEFBQUFxRzRpczJVODExLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yNi9GQi9yQkFDRTFNTzBVZkEwTzZUQUFBQXFHNGlzMlU4MTEucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMyI+PC9wPg==
- 提示2:PHA+6L+HTeS9nE1Q4oqlQkPkuqRCQ+eahOW7tumVv+e6v+S6jlDngrnvvIzmiYDku6VBRStFQitFQz1NTitORStFQ++8jOW9k0FFK0VCK0VD5Y+W5pyA5bCP5YC85pe277yM5oqY57q/TU5FQ+aIkOS4uue6v+aute+8jOWImTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wNC8wNS9yQkFDRkZNTzBVZVQtSzFYQUFBQ1lrRFgzXzAzMjMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA0LzA1L3JCQUNGRk1PMFVlVC1LMVhBQUFDWWtEWDNfMDMyMy5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI4OCI+PC9wPg==
- 提示3:PHA+4pazQUJN5Li6562J6L655LiJ6KeS5b2i77yM5YiZ4oigTUJDPTE1MMKw77yM5YiZ4oigUEJNPTMwwrDvvIzlnKhSdOKWs1BNQ+S4re+8jOiuvjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wNC8wNS9yQkFDRkZNTzBVZWltZkdFQUFBRFJ6MkdCM2s3NjEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA0LzA1L3JCQUNGRk1PMFVlaW1mR0VBQUFEUnoyR0Izazc2MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNjMiPiznhLblkI7liKnnlKjli77ogqHlrprnkIbljbPlj6/msYLlh7p4LjwvcD4=
- 答案:QQ==
PGRpdj7op6PvvJrku6VB5Li65peL6L2s5Lit5b+D77yM5bCG4pazQUJF5peL6L2sNjDCsOW+l+WIsOKWs0FNTu+8jOi/nk5F77yMTULvvIzov4dN5L2cTVDiiqVCQ+S6pEJD55qE5bu26ZW/57q/5LqOUOeCue+8jOWmguWbvu+8jDwvZGl2PjxkaXY+4oi0TU49QkXvvIxBTj1BRe+8jOKIoE5BRT02MMKw77yMPGJyPjwvZGl2PjxkaXY+4oi04pazQU5F5Li6562J6L655LiJ6KeS5b2i77yMPC9kaXY+PGRpdj7iiLRBRT1ORe+8jDwvZGl2PjxkaXY+4oi0QUUrRUIrRUM9TU4rTkUrRUPvvIw8L2Rpdj48ZGl2PuW9k0FFK0VCK0VD5Y+W5pyA5bCP5YC85pe277yM5oqY57q/TU5FQ+aIkOS4uue6v+aute+8jOWImTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wNC8wNS9yQkFDRkZNTzBVZVQtSzFYQUFBQ1lrRFgzXzAzMjMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA0LzA1L3JCQUNGRk1PMFVlVC1LMVhBQUFDWWtEWDNfMDMyMy5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI4OCI+77yMPC9kaXY+PGRpdj7iiLVBQj1BTe+8jOKIoEJBTT02MMKw77yMPC9kaXY+PGRpdj7iiLTilrNBQk3kuLrnrYnovrnkuInop5LlvaLvvIw8L2Rpdj48ZGl2PuKItOKIoE1CQz0xNTDCsO+8jOWImeKIoFBCTT0zMMKw77yMPC9kaXY+PGRpdj7lnKhSdOKWs1BNQ+S4re+8jOiuvjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8wNC8wNS9yQkFDRkZNTzBVZWltZkdFQUFBRFJ6MkdCM2s3NjEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA0LzA1L3JCQUNGRk1PMFVlaW1mR0VBQUFEUnoyR0Izazc2MS5wbmciIGhlaWdodD0iNDkiIHdpZHRoPSIxOTMiPjxicj48L2Rpdj48ZGl2PuaJgOS7pTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8yNi9GQi9yQkFDRTFNTzBVZnctb0pKQUFBRDhYbDRfTDgxOTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzI2L0ZCL3JCQUNFMU1PMFVmdy1vSkpBQUFEOFhsNF9MODE5NS5wbmciIGhlaWdodD0iNDkiIHdpZHRoPSIyMzIiPjxicj48L2Rpdj48ZGl2PuaJgOS7pXg9Mu+8jDxicj48L2Rpdj48ZGl2PuKItEJDPTLvvIw8L2Rpdj48ZGl2PuWNs+ato+aWueW9oueahOi+uemVv+S4ujIuPC9kaXY+