本课配套习题挑战模式1/5

返回课程
单选题
难度系数:

1.

如图,已知直线a∥b,∠1=40°,∠2=60°. 则∠3等于(  )


A:

100°

B:

60°

C:

40°

D:

20°

  • 提示1PHA+5aaC5Zu+77yM5YGaYSxi55qE5bmz6KGM57q/77yM5Y2z5Y+v5b6XQ0TiiKVh4oilYjwvcD48cD7igIvigIs8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvMTIvQkQvckJBQ0ZGTVVLbERodkdrOUFBQVAzMlcwaGQ4NTg1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8xMi9CRC9yQkFDRkZNVUtsRGh2R2s5QUFBUDMyVzBoZDg1ODUucG5nIiBhbHQ9IiIgc3R5bGU9IndpZHRoOiAxMjJweDsgaGVpZ2h0OiAxMDNweDsiPjxicj48L3A+PHA+PGltZyBzcmM9IiIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJkYXRhOmltYWdlL3BuZztiYXNlNjQsaVZCT1J3MEtHZ29BQUFBTlNVaEVVZ0FBQUhvQUFBQm5DQVlBQUFEUEVWYWhBQUFBQVhOU1IwSUFyczRjNlFBQUFBUm5RVTFCQUFDeGp3djhZUVVBQUFBSmNFaFpjd0FBRHNNQUFBN0RBY2R2cUdRQUFBOXJTVVJCVkhoZTdWMVBhQlJORmg4VlBJZ2dyUEZiL1JBOUtHNFdRVVdRVlJEZG1Jd0k2a0VSUGF3TEhtVDlNcU5pUUZFaE1XSDFvQ1p4UFhqd3o4V0RCMEhONUVNRXZjbXVDK0pCOTlPSkx1aEIxTVUvN0VGUjBQM01URzMvcXZ0MVYzZFhkMWQzWnRJMWt5NElTV2FxcTZ2ZXI5NnJWNi9lZTVWaldYRW9VSFgrTEE4UHNGSlorRUF6T2xWamRpMm5XZi9UNzQ1QndDb2JZUjI1M0RnQlhZazU1cmoxemVZem9BMGlWRDNzTVZnc3NIdytiOEFkazIxaVFoYW51cmVQY1o3TmdPYlVNam1FSUMwTkZ0akE4QkJybjlRMkxrQVRnRjRnSzlYSExEOHB4M0tRTEtXUzhSdjlxZmdtcFNyZ0dVZUxsQm9wc2NKQWlUSGpkeTYvUjVXR1k2cFhyWTRDUGplQUl6YzR3RU5QZitWdEY5Zm5XTWUrUWZNOUNZVk1CclFBVTZGUU1IbjhhWWwxRkFjU2MwOHM1QVhnaUtzTDdUbERxcFR0WnZvNzIxbG4veENyVkpLdHo1bm9GaENCeUFZWDBRK0FIcGZpNGRESHc2ZForMTczdXd0NWc3dWZHQ0JEVVl5cmJsdUR5RGdhaExCRXRrbnpDc1BXQ2lJOElVMFR6dytBQ080VnVYbm96RThzMStGZVJwSnd0aFpBSjUybFhvcksyNGxRWVBoNjNPbHFDdHpOMStvVUNvQWUvSG1FdjVtRGJFaVp3dWxoazVNdDdrK3lUR3NCZEMzcDZRVmJKQXIrRnY4ZkxPWnRVVTNHRVlqSlhHNHltMlFRZU56RXQwQUFpRzVhUHJBdUEzajhqNys1THBaUXpEUUYwTExCQnhGRS9Ed0paOVJ5VWdhMTVSYk5wSUJaMjBBRDZJWVUzV0V6Rk4rSlAyTWhjdUI3UXRCT1F0Q3g5Rkg2ckVRclQvSU83VGc2cVdpS08vakk5M0FDSjkvT3hPbFBaRitvc1RHSW9OeXhZOGVZVGo4OVBUMngrOVBiMjh1ZndiTmJ0MjVsQ3hjdWxMWmh0dDFuZjlmVEd6eDJhclBldEtIMzlQYTQrOEl4bFNwZnlTYWZGa0I3aVJxWHlHSjlnRGx0MmpTMmYvOStEbWozTVpvNDNVeWNFSHhpV0VEVDVQcnBMM3VNWjdydFNWTnZrT1h0bXhPeDFpVjEwUjFvNngyREZlam8wYVBzNE1HRHlyUjYvLzQ5MjdGakI1cy9mejc3K1BHajhuTzFxaWhLNUdpOXdPRm9aWkZ2ZERSMW9CMWlWYUsxU1lzaVVjUjQvZm8xYTJscFlkKytmWXZFNHZMbHk3d3VKb2RLL2NnR05hMmdFZEFpaFdUckVFei9iZ1dKUHBIUkZoeDY0TUFCMzk2VEpzbkxseS9aaGcwYjJOS2xTOW1EQnc4MGhhZDIzZElHYUp6aTJNb2xqQUlqMTh3anVoQXZqMHJsdTA4S0VKQmZ2bnhoaXhjdlptZlBudlZSYTJCZ2dIUHh5Wk1uMmVpbzg5N2FrVlcvbHJRQkdxUVpyWnJtU3RNNk5Oazhxb014UDZDSWswTldCU0o4N3R5NWJHakl0Q3FWeTJXMmN1Vkt0bmJ0V3ZiczJUUDkwS2hqai9RQTJyTS9oRWdlWldYdXp1TURPdVplRXVDQ2U3dTZ1dmp2OCtmUDIwYVlPdEpWdTZaVEIxcGNaeXNHdkxSM0JOQnRob2NGQVUwV3NqQUtpblZJSTcxLy96NWJzR0FCMjdScEUzdjM3bDJJZElnNWc3U0RNcnhEcVFQTjFTdnZWc3FndVplam8yRHd0dkg1ODJkV0xCYlo3Tm16MmZYcjEwT3BFR2ViMG1ENDJ0M1ZBbWoweHJ2ZXVvRjIvTHFpQUVkYnQyL2Y1Z0R2MnJVcmxYMnhqcE5CRDZBcmJwOHBnQjY0Um9kUThjT0hEN2JoNCs3ZHV6clNPN1UrNlFFMDJYUnhCR2NzMGxpckNlZ2JaVFhiTGhrK2podzU0ako4aUNKZEZORlJScGZVRUtuVGkxTUhHc1NYRVIxQTV5ZE45bW5kbUFaT3FUQXlmQ3hidHN4bCtKaG9RRWJOajlTQk50ZG56OHBydWJ1U3A4WHBZZE8xUml3QUhJYVBXYk5tVFNqRFJ4U2dRZC9yQ2JUUVczRU8wUFpwWkdTRXJmckRTclptelpwUXd3ZTRXc1hUSkNueEd1azVMWUNXRVV4bTljS2hBNDd3V2xwK3d3MGZTWjNaR3dtZ1d2VlZHNkJKZUhPQWVmU0M4V053SksyMU1Iejg3dmV0YlBQbWplenQyLy9VYXZ3VHBoME5nQTdScWczMHlmRHgyemsvc0d2WHJ2bUFDUlBQRXdaRmhZSFdIR2dWZzRaTHFiSVdZZGxhS2hvK1BuMzZaRDhXWmNuS05HNi80cW9NZEZ3QXBkcTB3c3hERlRKOHpKczNqNG1HRHkvQUJHZ1U4SXF2YmVwcVNrQzc5NjRtUFJ4bHlUeVc0TEZMVnBnbkloOFFURjRveEl0ZkFtQmsrRGg4K0hDb3g0ZkxQenRFS2pRMWVzTGd6TUFENzArN0hmcXJDRFMxNkk0bDVwOGlwTVViMVdCOUZpZXNKY2p3TVZHQXFzVTRBYmJqcUdIWUdRb2RCamJ0N0tuQkNBcEFlNVVsd1RuTlNnSEJRMHlGbm9MYjhKS0I0Y2RLL1orSUhoOUtoSWxSQ1JLMFBWLzBQUUh3Z1k4QzBNRnZNME5OU1R5SXhva0tHeHJvbExvQjBicUszM0FLd0NrVC9MRGg4Wkd0dVRHUXRhclNFb1lJMFB6ZVFaOXBnWE8xc1pRbUJycFNOVDFBYlBGc25FQ3BGc2Z3MGNLdFc5ejRrWlV4VWNDVW9FN3dQRFhHbWJIRGlNcE0zRHJXWVVQNXNodjNoaTE2UkRuOUM4TkhhMnNyOS9oNCsvWXRQek9HQXBhVjVCVGdZdHVXckdZN0JBY21RRXpSN1ZtckxZVUxRRHNZdSt1STJMOTY5WXF0V0xHQ1RaOCtuVzNmdnQyMlFjTlpiL2Z1M2R5MGlVZ0tzZkJJaHI1ZTMrZW9oNSsrdmo2WExacys5N1l6bHM5RjdYNHM3WWpqRXR1SjAzN2ZNVDk5ZUxzR0ZtS0lyKzJlSldDa3pOSGV2U3JsNHBKcTFzWUxSREZ5NjlZdE5tWEtGTFpreVJLRzgySUNBaEVTQUo1Q1UreUJHTXNBdkl1OGhLV0pVdytDQndHaDQrZUVCZEV4S0hDZmI3bldtMEgreWtDanN0ZGhudkorREphY3RRRktnVGVEQUo3ZHZIbXpzYTgyazhGUXVYcjFLdHUyYlJ0dm1Zc2I5V1UrdVp4cnlDZERYSjdaTTMveU80dVRjK3NkZXNjQ1drWWpEcXpsZyszYlR3c1B3SVFKSDJ0WXVtaEd3cjk2ZUhqWTF5endWc0U4eXErN0lURU43YlFiY0pQMm9wSEU5SVhIRDBsVW9xTXkwUHdzT0tnVHhoY3UwUjVROGM2ZE94eHNIRlFBY0d5ckVDa2hNMkUrK2JuZjd2UzZZcitkaTJ1aWNYMlEvaE02SC9oRDdrbWhETFE2ZHdTTEdleVRvWGpoWjlXcVZlelNwVXQyc3lKM3dvMm9VRGpEdjhQZjYwVHRYdEtSZXR1Nkc2WjlDMkFYbjFuL0tBQWQ1WndYL3IzWDhSN2NEQVVNR2poZmx3WGdpS0NWOG1PZURwRUt6OVJqNlFIOGpGcEZyb2ZNeklZQmpvL0JvZ001VUtwem5GQ3pFazhaRTkvaEoxYlVoRENmZnZqd0lRK05tVE5uanVWejdkalB4VWdOUGdrTUJ3U2tZTXAzOWh2akRWazZBZ2F2Q3FocVBlOXJWSjlUclJmV2Z0aXlLUjkrM1VWMzlKUkRhQXlpS0dBczhSWTdPTmJnM000T1U3Rm8zM3M2dXRHc1JpZ0ZGRVIzN1NrSThRc1JqZ3dETjIvZU5GOGcrSGJUR3hFV3l5eVBVSjVueXpPdHcrS2phOS9yeG00eEZhQ0paUGZ1M2VPSEduQTBzTUgxb0Frd0liNjkrVEhGeWRIWUVJeFA3MU1CV2x5emtKVmc1ODZkMG8wejFtalVSYnowdXVJcDN6WXM2ZG8zUHFUVjZ5MnBBQzJTNE92WHIzdy9mYU5raUdhcmlDSVowcHF5MjJiQUpwODhxUU9OcnYvam4zOW5zMzc4d1JiaFBOa3B1U1dGWkQzSWdGY0hmbHlBVmdFRTZhSk11emVLdFRVUU5zemdiTWU3VTIwcnAwNkc1cTg1TGtDcmtCSE9DSzJ0aTNqUWVwQU5tOXZBb1lsbkpUWUZ0QUVhWEErbkJHamhZU2tvTUVJVkNSR2JFazMrZ0JaQWl3NzMzZDNkYk11V0xTNnlCd0diQWE0K083VUFXdXd1UkRqeWcxMjVjc1grT0FOYUhkQ2dtcWtETFF1ZlFTWS9pSERrQ1FzckdVZXJUNERVZ1E3cUt0eUw0RUFvbGd4WWRXQzlOYlVFR2x3T2h3U2txd2p5RU0wQzZlS0JyaVhRTklSSGp4N3hJODAzYjk3RUcxVlcyMGNCcllGR2IwK2NPTUU2T2pxazBHVmNyVDZqdFFjYUluejU4dVV1dHlQMTRXVTFpUUtwQSszekY1ZUV3Q0pHYStiTW1UelZWRmFTVVNCMW9HWGRsb2xrUkZ6Q1BUZ3J5U2lnSmRDeW9VQ0VJM3puM0xsenlVWTZ3WjlxR0tDQkUwSnJvWVcvZVBHQ3c1WXBZK3F6dDZHQXhyQndkY0xxMWF2VlI1alY1QlJvT0tEUmFRQXR1eXNqd3pTWUFnMEJ0RGRENy9Qbno5bU1HVE5zRVo0QkhFMkIxSUZPRm5SUjRVb1psRE82NVVhMlhtZHJ1RE1CVWdmYTdrb014QWxBYkxldzdjcEtOQVgwQUZxSS9uTWJVTUo5dzJCQWdSWU9nMHAyc2hVT3RoNUFXMzIwZyt4d1d3NEtEOGNOdjRBTUVaa3drVTZVaThxaWVWZGVJM1dnU1dMemkzS3NmOXlYNXJnejd2UEo0Qkh6T1BRNGZ2eDRVaHBNaU9kU0IxcWtjcGo0TmFNMi9OeU5aK2pTVVJ4clprVlRqcFlGeW9tQWUvK1dUUVo4QmdjRk9DcGtJbHhUb0dYZFFwejBMeVhjVDJtR3pmNXg3eWxmb2h6WmMzQTlnZ3RTcHBqNXFhT1Y2S2J1VmN0RHJHMmZHUk5kZVhxRGc4M0RadkcvdUlCNzF1b2dFWjRCcjZrSmxHNkg1WXEzSVpaNUxCWlBEZTJVSUdNSTNJUVhMVnJVMUpkK0o5RkR0T05vMlpyOVMrbVVBZlFlMy9oa2RaRjJjdXJVcVd6UEhuLzlKQVJxbG1kU0I5cXZQQWxwb2kxdkUzQjA1MkRKU2tFbDMxZVRlTjY0Y1NQYnQyOGY5d3VYM2ZUZWlHSWNmYVorSisxLzZrQ0hjUXdHTmNvZXM3YThPK09nL1l3blBkR0ZDeGRzNHdteUVpSzVMQ0kva2hLbldiZ1o0MGdkNktpRGg4RmlweXNWRlJIZjFNa2M3a2Q2REhBeFRyYW9JQXdYNGJqTlVNVEpHa1V6MlhoVEI1cG5HQlVjQWtXakNFUzJtZXJRazJ2TE1weUlnOGRwRmhMVmlVUWc4SkVyeFZzYVpiK05NWHFQYVpOTVhBMkFkbmViQm9XOEpaMzl3L2FYK0wrLzlNU3ZrRm5iTFp4azRmb2tiNEVHajlRWkVPR05XSUs4Wk9PT1JUdWdNUUMrblJJU3lacUdFMXpwNEw1cmtvanc0Y04vdVNQQzkrLy84M051dGNLVDRYUjFkYm0vaTNFc0dwZW95ZXRUbG1PbmN6TGJmcEwyVXdmYU9kVHdhOXNZa0tseDRocERaM2ppVlliNDlPTEZpK3pQZjVKbk5vTFk1eUw4eHpuczZiK2Z1V2lVWksxTFF1U3hQRU5YV21DeUR6MmhpUkIrb2lkZG95a3B1amEvKzNyc1JPMVJmZXJwTlRMMEkwdC81RTgzTzNUb2tFSTlsYmJxVTZlbnh4azNBV1dMN1pGcnBoMUJrblJQZFJMbG9vbFVuNEhSZTJtQUJCcXl5dU52L0E3cW13aXdVNjliYXlCVjZOelg5MWMrQnArZUFUdUNaUUxtM3lWWWRsSVgzYjdaSzR3eTFFaUFKTEMydGk0UlpRbUlvY29kOWFnWGZCVlVoZkhzeG9PRGx0N1NadDlPRjZjZjJnQXRyTURTL2tmaDV0Vk9aVmY0eWE0TGlrT3NldGExZFJHdWx6Z1RGL25LY2UwVVVtUmlNZ0QwSk9QUUVHZ1JjdGN4aHZHRlduNHhlZ3BnRTFIb1dnTG5Tcjk2d3FiZXRzeHFKeXFKMkZhMkY4OFlJLytWbTRESnRoRFgycGM2ME9KTUZvRzBJUmF4RnB3STVldVVvTGw3NzRLeUxoVFJEZWlvS2RGZjdMQzFiZFMxMDJYR1hLdFRCenBxb0ZIZkIrMHp3Y0hpWFZEOGpzYTlmMHVxeTBSMUkvSDNiZythVVplSERNUzJhT2V2bHE5TGJ5QlNlWG5EQSswZEpCRU9kMk9LTjhqb3pzbGNzaG5pV1JSZy94bys1VGhjV0ZkRTBsNWFCVnl4VHRNQlRZTVRyOWdkNHBlbEdsZnVqcmdOTDNHSlZZLzYzd1ZvWmM2UGpsTFp4c3FXa3NhdnBJaFpHaDVvMXhKT2R5VmhQVFk4VXFpWWR6Y0tGNllxS25VeGFabXd1dHVzSzI4RXVvZWFJaHJVaVlZSFdqWXczeFYrd2gyTkNkR28yMlBtUkZVQjBWMG5hcnNwZGhqTFFuTUE3VElOVmxqUnVIU0YxbVM2UTVQdXVZNjdMYWtid2k0azNHL3hnbWh1TnJ4YnpYZzlhdzZnTGE2Z3ZmSWsxelYreHNtWElNWk44cWh3VUR4QzFydjJXSThyL3c4cHo5VGpIN3doRmdBQUFBQkpSVTVFcmtKZ2d1aVBnZVM4bU9lOWtRPT0iIGFsdD0iIiBoZWlnaHQ9ImF1dG8iIHdpZHRoPSJhdXRvIj48L3A+
  • 提示2PHA+5qC55o2u5Lik55u057q/5bmz6KGM77yM5YaF6ZSZ6KeS55u4562J77yM5Y2z5Y+v5rGC5b6X4oigM+eahOW6puaVsDwvcD4=