本课配套习题挑战模式1/3
单选题
难度系数:
1.
方程在内根的个数有( )
A: 0个 |
B: 1个 |
C: 2个 |
D: 3个 |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+5rGC5a+85Ye95pWwPC9wPg==
- 提示2:PHA+5om+5Ye65Y2V6LCD5Yy66Ze0PC9wPg==
- 提示3:PHA+6K6h566X5Yy66Ze056uv54K55YC8PC9wPg==
- 答案:Qg==
PHA+6Kej77ya5LukPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzQyL3JCQUNGRlRJdEhuaGc5OXVBQUFFTjFTVjBLbzEwMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvNDIvckJBQ0ZGVEl0SG5oZzk5dUFBQUVOMVNWMEtvMTAzLnBuZyIgaGVpZ2h0PSIyNCIgd2lkdGg9IjI2NCI+77yMPGJyPjwvcD48cD7nlLE8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMkQvckJBQ0UxVEl0SHFpWXdfVEFBQUNNVG1hSExjMDI2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yRC9yQkFDRTFUSXRIcWlZd19UQUFBQ01UbWFITGMwMjYucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNzEiPuW+lzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9COS9yQkFDSmxUSXRIcmhKNHBjQUFBQmtPQjZXYkk5NDcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0I5L3JCQUNKbFRJdEhyaEo0cGNBQUFCa09CNldiSTk0Ny5wbmciIGhlaWdodD0iMTkiIHdpZHRoPSIzNSI+5oiWPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0Y4L3JCQUNKMVRJdEhxQUtKdmxBQUFCZmpwUVlUNDI0Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SHFBS0p2bEFBQUJmanBRWVQ0MjQyLnBuZyIgaGVpZ2h0PSIxOSIgd2lkdGg9IjM1Ij7vvJvnlLE8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvNDIvckJBQ0ZGVEl0SHJTR2Q5T0FBQUNMMm9weHljODY1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS80Mi9yQkFDRkZUSXRIclNHZDlPQUFBQ0wyb3B4eWM4NjUucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNzEiPuW+lzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9GOC9yQkFDSjFUSXRIcXlUOExWQUFBQjNxZlhGRTgxNjIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0Y4L3JCQUNKMVRJdEhxeVQ4TFZBQUFCM3FmWEZFODE2Mi5wbmciIGhlaWdodD0iMTkiIHdpZHRoPSI1NiI+77ybPGJyPjwvcD48cD7lj4hm77yIMO+8iT0377yeMO+8jGbvvIgy77yJPS0x77ycMO+8jDxicj48L3A+PHA+4oi05pa556iL5Zyo77yIMO+8jDLvvInlhoXmnInkuJTlj6rmnInkuIDlrp7moLnvvI7mlYXpgIlC77yOPGJyPjwvcD4=
本课配套习题挑战模式2/3
单选题
难度系数:
2.
若函数有极值点,且,若关于的方程的不同实数根的个数是( )
A: 3 |
B: 4 |
C: 5 |
D: 6 |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+5rGC5Ye65a+85pWw5Li66Zu255qE6Ieq5Y+Y6YeP55qE5YC8PC9wPg==
- 提示2:PHA+5rGC5Y2V6LCD5Yy66Ze0PC9wPg==
- 提示3:PHA+6K6h566X5p6B5YC85LiO5Yy66Ze056uv54K55YC8PC9wPg==
- 提示4:PHA+55S75Ye6566A5Zu+77yM56Gu5a6a5qC555qE5Liq5pWwPC9wPg==
- 答案:QQ==
PHA+6Kej77yaPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0JBL3JCQUNKbFRJdElxZzlqdTNBQUFEZzdoVGhPbzk4Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQkEvckJBQ0psVEl0SXFnOWp1M0FBQURnN2hUaE9vOTgyLnBuZyIgaGVpZ2h0PSIyNyIgd2lkdGg9IjE0MSI+77yM5Zug5Li65Ye95pWwPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0I5L3JCQUNKbFRJdEgteU0zMjNBQUFCNzFHc2M1azczOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQjkvckJBQ0psVEl0SC15TTMyM0FBQUI3MUdzYzVrNzM5LnBuZyIgaGVpZ2h0PSIyNyIgd2lkdGg9IjM5Ij7mnInmnoHlgLzngrk8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SXF5anlEeUFBQUJ0RF96cnJZNTI3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9GOC9yQkFDSjFUSXRJcXlqeUR5QUFBQnREX3pyclk1MjcucG5nIiBoZWlnaHQ9IjI1IiB3aWR0aD0iMzkiPu+8jDxicj48L3A+PHA+5YiZPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0Y4L3JCQUNKMVRJdElxeWp5RHlBQUFCdERfenJyWTUyNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SXF5anlEeUFBQUJ0RF96cnJZNTI3LnBuZyIgaGVpZ2h0PSIyNSIgd2lkdGg9IjM5Ij7mmK/mlrnnqIs8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SXFqOXN3ZkFBQUR2MXVxVnRrODMwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8zRS9GOC9yQkFDSjFUSXRJcWo5c3dmQUFBRHYxdXFWdGs4MzAucG5nIiBoZWlnaHQ9IjI3IiB3aWR0aD0iMTY1Ij7nmoTkuKTmoLnjgII8YnI+PC9wPjxwPuWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS80Mi9yQkFDRkZUSXRJckFGcTZvQUFBRWpVcWFja282NTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzQyL3JCQUNGRlRJdElyQUZxNm9BQUFFalVxYWNrbzY1NC5wbmciIGhlaWdodD0iMjgiIHdpZHRoPSIxODgiPuaXtjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BQS80Mi9yQkFDRkZUSXRJckN2YTVqQUFBQ1FBUmdTVTQ4MDkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0FBLzQyL3JCQUNGRlRJdElyQ3ZhNWpBQUFDUUFSZ1NVNDgwOS5wbmciIGhlaWdodD0iMjciIHdpZHRoPSI2NSI+5oiWPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzJEL3JCQUNFMVRJdElyQmFpTmdBQUFDUnBZenJrSTU1My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMkQvckJBQ0UxVEl0SXJCYWlOZ0FBQUNScFl6cmtJNTUzLnBuZyIgaGVpZ2h0PSIyNyIgd2lkdGg9IjY4Ij7jgII8YnI+PC9wPjxwPuWboOS4ujxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9GOC9yQkFDSjFUSXRJcXlqeUR5QUFBQnREX3pyclk1MjcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0Y4L3JCQUNKMVRJdElxeWp5RHlBQUFCdERfenJyWTUyNy5wbmciIGhlaWdodD0iMjUiIHdpZHRoPSIzOSI+77yI5LiUPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0JBL3JCQUNKbFRJdElyUXAxdUpBQUFCclZERmtwQTI2NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQkEvckJBQ0psVEl0SXJRcDF1SkFBQUJyVkRGa3BBMjY1LnBuZyIgaGVpZ2h0PSIyNCIgd2lkdGg9IjQ1Ij7vvInmmK/mlrnnqIs8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SXFqOXN3ZkFBQUR2MXVxVnRrODMwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8zRS9GOC9yQkFDSjFUSXRJcWo5c3dmQUFBRHYxdXFWdGs4MzAucG5nIiBoZWlnaHQ9IjI3IiB3aWR0aD0iMTY1Ij7nmoTkuKTmoLnvvIw8YnI+PC9wPjxwPuaJgOS7peS7pDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9COS9yQkFDSmxUSXRIX1RVa3ptQUFBQ2FkYlRtSjQyOTYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0I5L3JCQUNKbFRJdEhfVFVrem1BQUFDYWRiVG1KNDI5Ni5wbmciIGhlaWdodD0iMjciIHdpZHRoPSI2NyI+5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzQyL3JCQUNGRlRJdEl1d3hoeElBQUFCYndQb0Niazk4OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvNDIvckJBQ0ZGVEl0SXV3eGh4SUFBQUJid1BvQ2JrOTg5LnBuZyIgaGVpZ2h0PSIyNCIgd2lkdGg9IjQwIj7miJY8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQkEvckJBQ0psVEl0SXZoeElpN0FBQUJtVHlsa0lrOTM0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9CQS9yQkFDSmxUSXRJdmh4SWk3QUFBQm1UeWxrSWs5MzQucG5nIiBoZWlnaHQ9IjI0IiB3aWR0aD0iNDEiPu+8jOS7pDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yRC9yQkFDRTFUSXRILVRmakxtQUFBQ1pTYXlGOUE2MzYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzJEL3JCQUNFMVRJdEgtVGZqTG1BQUFDWlNheUY5QTYzNi5wbmciIGhlaWdodD0iMjciIHdpZHRoPSI2NyI+5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0Y4L3JCQUNKMVRJdEl1Z3phQWFBQUFCelRwSENkYzY2OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SXVnemFBYUFBQUJ6VHBIQ2RjNjY4LnBuZyIgaGVpZ2h0PSIyNCIgd2lkdGg9IjY5Ij7vvIw8YnI+PC9wPjxwPuaJgOS7peWHveaVsDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9COS9yQkFDSmxUSXRILXlNMzIzQUFBQjcxR3NjNWs3MzkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0I5L3JCQUNKbFRJdEgteU0zMjNBQUFCNzFHc2M1azczOS5wbmciIGhlaWdodD0iMjciIHdpZHRoPSIzOSI+5ZyoPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0Y4L3JCQUNKMVRJdEl1UW42enZBQUFDVU5sYlhvTTIzOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SXVRbjZ6dkFBQUNVTmxiWG9NMjM5LnBuZyIgaGVpZ2h0PSIyNyIgd2lkdGg9IjU2Ij7lkow8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMkQvckJBQ0UxVEl0SXZ3UnN5SkFBQUNYd1B3X0drMTcxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yRC9yQkFDRTFUSXRJdndSc3lKQUFBQ1h3UHdfR2sxNzEucG5nIiBoZWlnaHQ9IjI3IiB3aWR0aD0iNTciPuS4iuWNleiwg+mAkuWinu+8jOWcqDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8yRS9yQkFDRTFUSXRJdUNDX0JwQUFBQ0lETm1BVEE1MzgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzJFL3JCQUNFMVRJdEl1Q0NfQnBBQUFDSURObUFUQTUzOC5wbmciIGhlaWdodD0iMjciIHdpZHRoPSI0OSI+5LiK5Y2V6LCD6YCS5YeP44CCPGJyPjwvcD48cD7lvZM8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvNDIvckJBQ0ZGVEl0SXZReUJwdUFBQUJaVy1GOUVFNTI1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS80Mi9yQkFDRkZUSXRJdlF5QnB1QUFBQlpXLUY5RUU1MjUucG5nIiBoZWlnaHQ9IjI0IiB3aWR0aD0iNDAiPuaXtuWHveaVsDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9COS9yQkFDSmxUSXRILXlNMzIzQUFBQjcxR3NjNWs3MzkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0I5L3JCQUNKbFRJdEgteU0zMjNBQUFCNzFHc2M1azczOS5wbmciIGhlaWdodD0iMjciIHdpZHRoPSIzOSI+5Y+W5b6X5p6B5aSn5YC85Li6PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzQyL3JCQUNGRlRJdEl2UzBoMURBQUFDUndaakZMRTg5My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvNDIvckJBQ0ZGVEl0SXZTMGgxREFBQUNSd1pqRkxFODkzLnBuZyIgaGVpZ2h0PSIyNyIgd2lkdGg9IjY5Ij7vvIw8YnI+PC9wPjxwPuW9kzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8zRS9CQS9yQkFDSmxUSXRJdWlsaDVWQUFBQmhBSEFlbWM5NzgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNFL0JBL3JCQUNKbFRJdEl1aWxoNVZBQUFCaEFIQWVtYzk3OC5wbmciIGhlaWdodD0iMjQiIHdpZHRoPSI0MSI+5pe25Ye95pWwPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0I5L3JCQUNKbFRJdEgteU0zMjNBQUFCNzFHc2M1azczOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQjkvckJBQ0psVEl0SC15TTMyM0FBQUI3MUdzYzVrNzM5LnBuZyIgaGVpZ2h0PSIyNyIgd2lkdGg9IjM5Ij7lj5blvpfmnoHlsI/lgLzkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRjgvckJBQ0oxVEl0SXVERTEzbEFBQUNGb3czekpjNDI0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8zRS9GOC9yQkFDSjFUSXRJdURFMTNsQUFBQ0ZvdzN6SmM0MjQucG5nIiBoZWlnaHQ9IjI3IiB3aWR0aD0iNDQiPuOAgjxicj48L3A+PHA+5Zug5Li6PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0JBL3JCQUNKbFRJdElyUXAxdUpBQUFCclZERmtwQTI2NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQkEvckJBQ0psVEl0SXJRcDF1SkFBQUJyVkRGa3BBMjY1LnBuZyIgaGVpZ2h0PSIyNCIgd2lkdGg9IjQ1Ij7nlLHmlbDlvaLnu5PlkIjliIbmnpDlj6/nn6XmiYDmsYLmlrnnqIvmoLnnmoTkuKrmlbDkuLoz5Liq44CCPGJyPjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9CQS9yQkFDSmxUSXRJdUM0b29zQUFBZW9UVW51WGc1MDkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0JBL3JCQUNKbFRJdEl1QzRvb3NBQUFlb1RVbnVYZzUwOS5wbmciIGhlaWdodD0iMTcyIiB3aWR0aD0iMjg2Ij48YnI+PC9wPg==
本课配套习题挑战模式3/3
单选题
难度系数:
3.
已知函数,则方程()的根的个数不可能为( )
A: 6 |
B: 5 |
C: 4 |
D: 3 |
一次做对,真牛!
+5奖励规则>
- 提示1:PHA+55S75Zu+77yM5Yip55So5Zu+5YOP5YiG5p6QPC9wPg==
- 提示2:PHA+5o2i5YWDPC9wPg==
- 答案:RA==
PHA+6Kej77yaPC9wPjxwPu+8iDHvvInnlLvlh7pm77yIeO+8ieWbvuixoe+8jDxicj48aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQjkvQjUvckJBQ0ZGVGF2WFRDSUNwbUFBQXEtV21aTnpNMDc3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9COS9CNS9yQkFDRkZUYXZYVENJQ3BtQUFBcS1XbVpOek0wNzcucG5nIiBoZWlnaHQ9IjM3OSIgd2lkdGg9IjM2MyI+PGJyPuW9k3jvvJ4w5pe277yMZu+8iHjvvIk9eCs8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQjkvQjUvckJBQ0ZGVGF2WFR5WDVkdkFBQUF6UmltVWQwNzUwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9COS9CNS9yQkFDRkZUYXZYVHlYNWR2QUFBQXpSaW1VZDA3NTAucG5nIiBoZWlnaHQ9IjQxIiB3aWR0aD0iMTYiPuKJpTLvvIzlvZN44omkMOaXtu+8jGbvvIh477yJPXg8c3VwPjM8L3N1cD4rM+KJpDPvvI48YnI+PC9wPjxwPuS6juaYr+WPr+W+l++8mjwvcD48cD7ikaDlvZMy77ycYe+8nDPml7bvvIxm77yIeO+8iT1h5pyJM+S4quague+8jOS4gOi0n+S6jOato++8mzwvcD48cD7ikaHlvZNhPTPml7bvvIxm77yIeO+8iT1h5pyJM+S4quague+8jOS4gOmbtuS6jOato++8mzwvcD48cD7ikaLlvZMz77ycYeaXtu+8jGbvvIh477yJPWHmnIky5Liq5q2j5qC577ybPC9wPjxwPuKRo+W9k2E9MuaXtu+8jGbvvIh477yJPWHmnInkuIDmraPkuIDotJ/moLnvvJvikaTlvZNh77ycMuaXtu+8jGbvvIh477yJPWHlj6rmnInkuIDotJ/moLnvvI48YnI+77yIMu+8ieS7pHQ9Mng8c3VwPjI8L3N1cD4reD0yKHgrPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3L0UzL3JCQUNKbFRhdlhTd3FPZExBQUFBMDhpMTdKUTM3MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvRTMvckJBQ0psVGF2WFN3cU9kTEFBQUEwOGkxN0pRMzcxLnBuZyIgaGVpZ2h0PSI0MSIgd2lkdGg9IjE2Ij4pPHN1cD4yPC9zdXA+LTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny9FMy9yQkFDSmxUYXZYU0EtdmM3QUFBQXpSSERSZ2MwODAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3L0UzL3JCQUNKbFRhdlhTQS12YzdBQUFBelJIRFJnYzA4MC5wbmciIGhlaWdodD0iNDEiIHdpZHRoPSIxNSI+PGJyPu+8jOWImXTiiaUtPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3L0UzL3JCQUNKbFRhdlhTQS12YzdBQUFBelJIRFJnYzA4MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvRTMvckJBQ0psVGF2WFNBLXZjN0FBQUF6UkhEUmdjMDgwLnBuZyIgaGVpZ2h0PSI0MSIgd2lkdGg9IjE1Ij7ml7bvvIzmnIky5LiqeOS4juS5i+WvueW6lO+8jOKItOagueeahOS4quaVsOWIhuWIq+S4ujTjgIE144CBNuS4qu+8mzwvcD48cD7ikaHlvZMz77ycYeaXtu+8jGbvvIh077yJPWHmnIky5Liq5q2j5qC577yM5Lik5Liq5q2jdOWIhuWIq+WvueW6lDLkuKp477yM5q2k5pe25qC555qE5Liq5pWw5Li6NOS4qu+8jjwvcD48cD7ikaLnlLHpopjnm67kuI3lv4XogIPomZFh4omkMueahOaDheW9ou+8juaJgOS7peagueeahOS4quaVsOWPquWPr+iDveS4ujTjgIE144CBNuS4qu+8juWNs+aWueeoi2bvvIgyeDxzdXA+Mjwvc3VwPit477yJPWHnmoTmoLnnmoTkuKrmlbDlj6rlj6/og73kuLo044CBNeOAgTbkuKrvvIzkuI3lj6/og73kuLoz5Liq77yO5pWF6YCJRO+8jjwvcD4=