本课配套习题挑战模式1/5
已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )
A: 圆 |
B: 椭圆 |
C: 双曲线 |
D: 抛物线 |
- 提示1:PHA+55S75Zu+5YiG5p6QPC9wPg==
- 提示2:PHA+5Yip55So5Z6C55u05bmz5YiG57q/55qE5oCn6LSo77yM5Luj5o2i55u4562J57q/5q61PGJyPjwvcD4=
- 答案:Qg==
PHA+54K5UOWcqOe6v+autUFO55qE5Z6C55u05bmz5YiG57q/5LiK77yM5pWFfFBBfO+8nXxQTnzvvIzlj4hBTeaYr+WchueahOWNiuW+hO+8jDxicj7iiLR8UE1877yLfFBOfO+8nXxQTXzvvIt8UEF877ydfEFNfO+8nTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny9BRi9yQkFDSjFUWnVDNnpUVmZPQUFBQlFMOVpEVEE2OTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3L0FGL3JCQUNKMVRadUM2elRWZk9BQUFCUUw5WkRUQTY5MC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIyMiI+fE1OfO+8jOeUseakreWchuWumuS5ieefpe+8jFDnmoTovajov7nmmK/mpK3lnIY8L3A+
本课配套习题挑战模式2/5
已知F1、F2分别为椭圆C:+=1的左、右焦点,点P为椭圆C上的动点,则△PF1F2的重心G的轨迹方程为( )
A: +=1(y≠0) |
B: +y2=1(y≠0) |
C: +3y2=1(y≠0) |
D: x2+=1(y≠0) |
- 提示1:PHA+5LiJ6KeS5b2i55qE6YeN5b+D5Li65Lit57q/55qE5Lqk54K5PC9wPg==
- 答案:Qw==
PHA+5qSt5ZyGQ++8mjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny9BRi9yQkFDSjFUWnVEU0NmVUpzQUFBQmlHRWlWYkkxNTgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3L0FGL3JCQUNKMVRadURTQ2ZVSnNBQUFCaUdFaVZiSTE1OC5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSIxMiI+77yLPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzdDLzIzL3JCQUNFMVRadURhQ2pnaEpBQUFCbHJMRy1NSTk0MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvN0MvMjMvckJBQ0UxVFp1RGFDamdoSkFBQUJsckxHLU1JOTQwLnBuZyIgaGVpZ2h0PSI0MyIgd2lkdGg9IjEyIj7vvJ0x5Lit77yMYTxzdXA+Mjwvc3VwPu+8nTTvvIxiPHN1cD4yPC9zdXA+77ydM++8jDxicj7iiLRjPHN1cD4yPC9zdXA+77ydYTxzdXA+Mjwvc3VwPu+8jWI8c3VwPjI8L3N1cD7vvJ0x77yM4oi054Sm54K5RjxzdWI+MTwvc3ViPijvvI0xLDAp77yMRjxzdWI+Mjwvc3ViPigxLDAp77yMPGJyPuiuvkcoeO+8jHkp77yMUCh4PHN1Yj4xPC9zdWI+77yMeTxzdWI+MTwvc3ViPinvvIzliJk8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvN0MvMjMvckJBQ0UxVFp1RGFoVEsxOUFBQUQ2d28wYXdRMTM4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Qy8yMy9yQkFDRTFUWnVEYWhUSzE5QUFBRDZ3bzBhd1ExMzgucG5nIiBoZWlnaHQ9IjEwNSIgd2lkdGg9IjExNyI+77yM4oi0PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzZDL3JCQUNKbFRadURUZ2s5eEtBQUFDeExKQ256ODA4OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNkMvckJBQ0psVFp1RFRnazl4S0FBQUN4TEpDbno4MDg5LnBuZyIgaGVpZ2h0PSI2MyIgd2lkdGg9IjU0Ij7vvIw8YnI+4oi1UOWcqOakreWchkPkuIrvvIziiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNkMvckJBQ0psVFp1RFRob0N1aUFBQUIycHFWUlF3MDc1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny82Qy9yQkFDSmxUWnVEVGhvQ3VpQUFBQjJwcVZSUXcwNzUucG5nIiBoZWlnaHQ9IjQzIiB3aWR0aD0iNDYiPu+8izxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny82Qy9yQkFDSmxUWnVEVEQ3RVI1QUFBQjZaRVBrNnMxMTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzZDL3JCQUNKbFRadURURDdFUjVBQUFCNlpFUGs2czExMC5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSI0NiI+77ydMe+8jOKItDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC80Ny9BRi9yQkFDSjFUWnVEVGdFV1U2QUFBQnp0OWw2WmM1MjcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzQ3L0FGL3JCQUNKMVRadURUZ0VXVTZBQUFCenQ5bDZaYzUyNy5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSIxOCI+77yLM3k8c3VwPjI8L3N1cD7vvJ0xLjxicj7lvZN577ydMOaXtu+8jOeCuUflnKh46L205LiK77yM5LiJ54K5UOOAgUY8c3ViPjE8L3N1Yj7jgIFGPHN1Yj4yPC9zdWI+5p6E5LiN5oiQ5LiJ6KeS5b2i77yMPGJyPuKItHniiaAw77yM4oi054K5R+eahOi9qOi/ueaWueeoi+S4ujxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC80Ny9BRi9yQkFDSjFUWnVEVGdFV1U2QUFBQnp0OWw2WmM1MjcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzQ3L0FGL3JCQUNKMVRadURUZ0VXVTZBQUFCenQ5bDZaYzUyNy5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSIxOCI+77yLM3k8c3VwPjI8L3N1cD7vvJ0xLih54omgMCnvvI48YnI+PC9wPg==
本课配套习题挑战模式3/5
如图所示,A、B、C分别为椭圆+=1(a>b>0)的顶点与焦点,若∠ABC=90°,则该椭圆的离心率为( )
A: |
B: |
C: -1 |
D: |
- 提示1:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3L0IwL3JCQUNKMVRadVBQVHRpdmpBQUFDSVY3RlFaVTEyNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvQjAvckJBQ0oxVFp1UFBUdGl2akFBQUNJVjdGUVpVMTI1LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9Ijg3Ij48L3A+
- 提示2:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzdDLzI0L3JCQUNFMVRadVBYempNcjVBQUFCdmJjcXBRODczMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvN0MvMjQvckJBQ0UxVFp1UFh6ak1yNUFBQUJ2YmNxcFE4NzMwLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjUxIj48L3A+
- 提示3:PHA+UnTilrNBQkPkuK1CT+KKpUFD77yM5qC55o2u5Yu+6IKh5a6a55CG5YiX5Ye6562J6YeP5YWz57O777yM5bm25YyW566APGJyPjwvcD4=
- 答案:QQ==
PHA+55SxKDxpPmE8L2k+77yLPGk+YzwvaT4pPHN1cD4yPC9zdXA+77ydPGk+YTwvaT48c3VwPjI8L3N1cD7vvIsyPGk+YjwvaT48c3VwPjI8L3N1cD7vvIs8aT5jPC9pPjxzdXA+Mjwvc3VwPu+8jDxicj7iiLU8aT5iPC9pPjxzdXA+Mjwvc3VwPu+8nTxpPmE8L2k+PHN1cD4yPC9zdXA+77yNPGk+YzwvaT48c3VwPjI8L3N1cD7vvIziiLQ8aT5jPC9pPjxzdXA+Mjwvc3VwPu+8izxpPmFjPC9pPu+8jTxpPmE8L2k+PHN1cD4yPC9zdXA+77ydMO+8jDxicj7iiLU8aT5lPC9pPu+8nTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny82RC9yQkFDSmxUWnVQU3k5a3lBQUFBQlJnQXAydzg3MjIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzZEL3JCQUNKbFRadVBTeTlreUFBQUFCUmdBcDJ3ODcyMi5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSI4Ij7vvIziiLQ8aT5lPC9pPjxzdXA+Mjwvc3VwPu+8izxpPmU8L2k+77yNMe+8nTDvvIziiLQ8aT5lPC9pPu+8nTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny9CMC9yQkFDSjFUWnVQT3hyUFNlQUFBQi0zb2prZjQ3OTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3L0IwL3JCQUNKMVRadVBPeHJQU2VBQUFCLTNvamtmNDc5Mi5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSI1MyI+PC9wPg==
本课配套习题挑战模式4/5
P是长轴在x轴上的椭圆+=1上的点,F1、F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|·|PF2|的最大值与最小值之差一定是()
A: 1 |
B: a2 |
C: b2 |
D: c2 |
- 提示1:PHA+5qSt5ZyG55qE5a6a5LmJPC9wPg==
- 提示2:PHA+57uT5ZCI5qSt5ZyG55qE5oCn6LSoPC9wPg==
- 提示3:PHA+5YiG5Yir6KGo56S65Ye6fDxpPlBGPC9pPjxzdWI+MTwvc3ViPnzCt3w8aT5QRjwvaT48c3ViPjI8L3N1Yj5855qE5pyA5aSn5YC85LiO5pyA5bCP5YC8PGJyPjwvcD4=
- 答案:RA==
PHA+55Sx5qSt5ZyG55qE5Yeg5L2V5oCn6LSo5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0I4L0VFL3JCQUNGRlRadUVxUS1pUDBBQUFCUGl4cFRWQTY3OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQjgvRUUvckJBQ0ZGVFp1RXFRLWlQMEFBQUJQaXhwVFZBNjc4LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjIwIj48c3ViPjE8L3N1Yj48aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNkMvckJBQ0psVFp1RXZSd2FZVkFBQUNBTS1xb2NJOTE1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC80Ny82Qy9yQkFDSmxUWnVFdlJ3YVlWQUFBQ0FNLXFvY0k5MTUucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTAyIj7vvIw8YnI+fDxpPlBGPC9pPjxzdWI+MTwvc3ViPnzvvIt8PGk+UEY8L2k+PHN1Yj4yPC9zdWI+fO+8nTI8aT5hPC9pPu+8jDxicj7miYDku6V8PGk+UEY8L2k+PHN1Yj4xPC9zdWI+fMK3fDxpPlBGPC9pPjxzdWI+Mjwvc3ViPnziiaQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNkMvckJBQ0psVFp1RXZ4WWFrYUFBQURVb3ZxQmFFODMyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC80Ny82Qy9yQkFDSmxUWnVFdnhZYWthQUFBRFVvdnFCYUU4MzIucG5nIiBoZWlnaHQ9IjQzIiB3aWR0aD0iODEiPjxzdXA+Mjwvc3VwPu+8nTxpPmE8L2k+PHN1cD4yPC9zdXA+77yM5b2T5LiU5LuF5b2TfDxpPlBGPC9pPjxzdWI+MTwvc3ViPnzvvJ18PGk+UEY8L2k+PHN1Yj4yPC9zdWI+fOaXtuWPluetieWPt++8jjxicj58PGk+UEY8L2k+PHN1Yj4xPC9zdWI+fMK3fDxpPlBGPC9pPjxzdWI+Mjwvc3ViPnzvvJ18PGk+UEY8L2k+PHN1Yj4xPC9zdWI+fCgyPGk+YTwvaT7vvI18PGk+UEY8L2k+PHN1Yj4xPC9zdWI+fCk8YnI+77yd77yNfDxpPlBGPC9pPjxzdWI+MTwvc3ViPnw8c3VwPjI8L3N1cD7vvIsyPGk+YTwvaT58PGk+UEY8L2k+PHN1Yj4xPC9zdWI+fO+8ne+8jSh8PGk+UEY8L2k+PHN1Yj4xPC9zdWI+fO+8jTxpPmE8L2k+KTxzdXA+Mjwvc3VwPu+8izxpPmE8L2k+PHN1cD4yPC9zdXA+PGJyPuKJpe+8jTxpPmM8L2k+PHN1cD4yPC9zdXA+77yLPGk+YTwvaT48c3VwPjI8L3N1cD7vvJ08aT5iPC9pPjxzdXA+Mjwvc3VwPu+8jDxicj7miYDku6V8PGk+UEY8L2k+PHN1Yj4xPC9zdWI+fMK3fDxpPlBGPC9pPjxzdWI+Mjwvc3ViPnznmoTmnIDlpKflgLzkuI7mnIDlsI/lgLzkuYvlt67kuLo8aT5hPC9pPjxzdXA+Mjwvc3VwPu+8jTxpPmI8L2k+PHN1cD4yPC9zdXA+77ydPGk+YzwvaT48c3VwPjI8L3N1cD48YnI+PC9wPg==
本课配套习题挑战模式5/5
A: 充分不必要条件 |
B: 必要不充分条件 |
C: 充要条件 |
D: 既不充分也不必要条件 |
- 提示1:5a+55a6a5LmJ55qE55CG6Kej
- 提示2:5rOo5oSP5a6a5LmJ5Lit55qE6ZmQ5Yi25p2h5Lu2
- 答案:Qg==
54K5PGk+UDwvaT7lnKjnur/mrrU8aT5BQjwvaT7kuIrml7Z8PGk+UEE8L2k+fO+8i3w8aT5QQjwvaT585piv5a6a5YC877yM5L2G54K5PGk+UDwvaT7ovajov7nkuI3mmK/mpK3lnIbvvIzlj43kuYvmiJDnq4vvvIzmlYXpgIlCLg==