本课配套习题挑战模式1/3
单选题
难度系数:
1.若数列{bn}的通项公式为bn=n2•2n,则其前n项和Tn=( )
A: (n2-2n+3)•2n+1 |
B: (n2-2n+3)•2n-6 |
C: (n2-2n+3)•2n+1-6 |
D: (n2-2n+3)•2n+1+6 |
一次做对,真牛!
+5奖励规则>
- 提示1:IOWFiOWmgumimOiuvuS4remUmeS9jeebuOWHj+azle+8jOato+WlveaxguW+l1Q8c3ViPm48L3N1Yj49LVM8c3ViPm48L3N1Yj4rbjxzdXA+Mjwvc3VwPiYjODIyNjsyPHN1cD5uKzE8L3N1cD7ov5vogIzlvpfliLDnrZTmoYgu
- 答案:Qw==
6Kej77yaVDxzdWI+bjwvc3ViPj0xw5cyKzTDlzI8c3VwPjI8L3N1cD4rOcOXMjxzdXA+Mzwvc3VwPivigKZuPHN1cD4yPC9zdXA+JiM4MjI2OzI8c3VwPm48L3N1cD48YnI+4oi0MlQ8c3ViPm48L3N1Yj49McOXMjxzdXA+Mjwvc3VwPis0w5cyPHN1cD4zPC9zdXA+KznDlzI8c3VwPjQ8L3N1cD4r4oCmbjxzdXA+Mjwvc3VwPiYjODIyNjsyPHN1cD5uKzE8L3N1cD48YnI+4oi0LVQ8c3ViPm48L3N1Yj49McOXMiszw5cyPHN1cD4yPC9zdXA+KzXDlzI8c3VwPjM8L3N1cD4r4oCm77yIMm4tMe+8iTI8c3VwPm48L3N1cD4tbjxzdXA+Mjwvc3VwPiYjODIyNjsyPHN1cD5uKzE8L3N1cD48YnI+5Y2zVDxzdWI+bjwvc3ViPj0tUzxzdWI+bjwvc3ViPituPHN1cD4yPC9zdXA+JiM4MjI2OzI8c3VwPm4rMTwvc3VwPj3vvIhuPHN1cD4yPC9zdXA+LTJuKzPvvIkmIzgyMjY7MjxzdXA+bisxPC9zdXA+LTY8YnI+5pWF562U5qGI5Li677ya77yIbjxzdXA+Mjwvc3VwPi0ybisz77yJJiM4MjI2OzI8c3VwPm4rMTwvc3VwPi02
本课配套习题挑战模式2/3
单选题
难度系数:
2.已知数列{an}的前n项和为sn,且an=n•3n,则sn为:( )
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:IOe7k+WQiOaVsOWIl+eahOmAmumhueeahOeJueeCue+8jOiAg+iZkeWIqeeUqOmUmeS9jeebuOWHj+axguWSjOaWueazleWNs+WPr+axguinow==
- 答案:QQ==
PGltZyB3aWR0aD00MTYgaGVpZ2h0PTE0MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzFFLzNGL3JCQUNGRk43VEFQQkVMcDBBQUFhUWhfa1diZzExOS5wbmciPg==
本课配套习题挑战模式3/3
单选题
难度系数:
3.
A: |
B: |
C: |
D: |
一次做对,真牛!
+5奖励规则>
- 提示1:IDxpbWcgd2lkdGg9NTU0IGhlaWdodD0zNCBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzFFLzQwL3JCQUNGRk43VEZqeEhWaVdBQUFTcE05VHVWVTgxLmpwZWciPg==
- 答案:Qw==
PGltZyB3aWR0aD0zODMgaGVpZ2h0PTIxNSBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzVBLzNGL3JCQUNFMU43VEZpei02OU5BQUFrbU5id3hJczM5MC5wbmciPg==