本课配套习题挑战模式1/5
直线l 过点(-1,2)且与直线2x-3y+4=0垂直,则l 的方程是( )
A: 3x+2y-1=0 |
B: 3x+2y+7=0 |
C: 2x-3y+5=0 |
D: 2x-3y+8=0 |
- 提示1:PHA+55u057q/55u45LqS5Z6C55u077yM5pac546H5LqS5Li66LSf5YCS5pWwPC9wPg==
- 答案:QQ==
PHA+6Kej77ya55Sx6aKY5oSP55+l77yM55u057q/PHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+bDwvdmFyPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+55qE5pac546H5Li677yNPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNFLzdCL3JCQUNKMVRIVFh6em5SZmNBQUFCV0FvS29fQTAwOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvN0IvckJBQ0oxVEhUWHp6blJmY0FBQUJXQW9Lb19BMDA5LnBuZyIgaGVpZ2h0PSI0MyIgd2lkdGg9IjgiPu+8jOWboOatpOebtOe6vzxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQiPmw8L3Zhcj48L3NwYW4+PHNwYW4+Jm5ic3A7PC9zcGFuPueahOaWueeoi+S4unnvvI0y77yd77yNPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNFLzdCL3JCQUNKMVRIVFh6em5SZmNBQUFCV0FvS29fQTAwOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvN0IvckJBQ0oxVEhUWHp6blJmY0FBQUJXQW9Lb19BMDA5LnBuZyIgaGVpZ2h0PSI0MyIgd2lkdGg9IjgiPih477yLMSnvvIw8YnI+5Y2zM3jvvIsyee+8jTHvvJ0wPGJyPjwvcD4=
本课配套习题挑战模式2/5
直线(2m2-5m+2)x-(m2-4)y+5m=0的倾斜角为45°,则m的值为( )
A: |
B: |
C: |
D: |
- 提示1:PHA+5qC55o2u55u057q/5pa556iL5LiA6Iis5byP55qE6KGo56S65b2i5byP6Kej5Y+C5pWwPC9wPg==
- 答案:RA==
PHA+6Kej5p6Q77ya55Sx5bey55+l5b6XbTxzdXA+Mjwvc3VwPu+8jTTiiaAw77yM5LiUPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFLzNGL3JCQUNKbFRIVFd6UW8yWnhBQUFDdEFXYjBmTTYzMS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvM0YvckJBQ0psVEhUV3pRbzJaeEFBQUN0QVdiMGZNNjMxLnBuZyIgaGVpZ2h0PSI0MyIgd2lkdGg9Ijc2Ij7vvJ0x77yMPGJyPuino+W+l++8mm3vvJ0z5oiWbe+8nTIo6IiN5Y67KTxicj48L3A+
本课配套习题挑战模式3/5
方程y=k(x-2)表示( )
A: 通过点(-2,0)的所有直线 |
B: 通过点(2,0)的所有直线 |
C: 通过点(2,0)且不垂直于x轴的所有直线 |
D: 通过点(2,0)且除去x轴的所有直线 |
- 提示1:PHA+55CG5riF5qaC5b+177yM5LiN6KaB5re35reG5Y2z5Y+vPC9wPg==
- 答案:Qw==
PHA+6Kej5p6Q77ya5piT6aqM6K+B55u057q/6YCa6L+H54K5KDIsMCnvvIzlj4jnm7Tnur/mlpznjoflrZjlnKjvvIzmlYXnm7Tnur/kuI3lnoLnm7Tkuo48aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzIvQjEvckJBQ0UxVEhVb3FEbHJONUFBQUJFcHVjQS13ODU2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Mi9CMS9yQkFDRTFUSFVvcURsck41QUFBQkVwdWNBLXc4NTYucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iOCI+6L20Ljxicj48L3A+
本课配套习题挑战模式4/5
过点(5,2),且在x轴上的截距(直线与x轴交点的横坐标)是在y轴上的截距的2倍的直线方程是( )
A: 2x+y-12=0 |
B: 2x+y-12=0或2x-5y=0 |
C: x-2y-1=0 |
D: x+2y-9=0或2x-5y=0 |
- 提示1:PHA+6K6o6K66PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFLzNGL3JCQUNKbFRIVFY2aTFKNjlBQUFCVTFHUWhpazAzNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvM0YvckJBQ0psVEhUVjZpMUo2OUFBQUJVMUdRaGlrMDM1LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjM0Ij7lkow8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvN0IvckJBQ0oxVEhUVjZTenpFTUFBQUJiNDdlY2FjMDk1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS83Qi9yQkFDSjFUSFRWNlN6ekVNQUFBQmI0N2VjYWMwOTUucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMzQiPuS4pOenjeaDheWGtTxicj48L3A+
- 答案:RA==
PHA+6Kej5p6Q77ya5b2Teei9tOS4iuaIqui3nWLvvJ0w5pe277yM5pa556iL6K6+5Li6ee+8nWt477yMPGJyPuWwhig1LDIp5Luj5YWl5b6X77yMee+8nTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Mi9BRi9yQkFDRTFUSFRWNkRTTEtRQUFBQmFKTEVTRjQ2OTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzcyL0FGL3JCQUNFMVRIVFY2RFNMS1FBQUFCYUpMRVNGNDY5Mi5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSI4Ij5477yM5Y2zMnjvvI01ee+8nTDvvJs8YnI+5b2TYuKJoDDml7bvvIzmlrnnqIvorr7kuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzIvQUYvckJBQ0UxVEhUVjdoZWxKMUFBQUJxWGdGTXFNNzAwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Mi9BRi9yQkFDRTFUSFRWN2hlbEoxQUFBQnFYZ0ZNcU03MDAucG5nIiBoZWlnaHQ9IjQzIiB3aWR0aD0iMTQiPu+8izxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BOS83My9yQkFDRkZUSFRWNnd0S1VkQUFBQlkyY2JBd284MTcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E5LzczL3JCQUNGRlRIVFY2d3RLVWRBQUFCWTJjYkF3bzgxNy5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSI4Ij7vvJ0x77yM5rGC5b6XYu+8nTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS8zRi9yQkFDSmxUSFRWN0RjUU9zQUFBQmJKZ0wxNlU0MjkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFLzNGL3JCQUNKbFRIVFY3RGNRT3NBQUFCYkpnTDE2VTQyOS5wbmciIGhlaWdodD0iNDMiIHdpZHRoPSI4Ij7vvIziiLTpgIk8aT5EPC9pPi48YnI+PC9wPg==
本课配套习题挑战模式5/5
直线ax+by+c=0(ab≠0)在两坐标轴上的截距相等,则a,b,c满足( )
A: a=b |
B: |a|=|b|且c≠0 |
C: a=b且c≠0 |
D: a=b或c=0 |
- 提示1:PHA+5YiG5oiq6Led562J5LqOMOWSjOS4jeetieS6jjDkuKTnp43mg4XlhrXorqjorro8L3A+
- 答案:RA==
PHA+6Kej5p6Q77ya55u057q/5Zyo5Lik5Z2Q5qCH6L205LiK55qE5oiq6Led55u4562J5Y+v5YiG5Li65Lik56eN5oOF5b2i77yaPGJyPigxKeaIqui3neetieS6jjDvvIzmraTml7blj6ropoFj77ydMOWNs+WPr++8mzxicj4oMinmiKrot53kuI3nrYnkuo4w77yM5q2k5pe2PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFLzQwL3JCQUNKbFRIVW5EU0Vya01BQUFCYmVrdEZoRTgyMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvNDAvckJBQ0psVEhVbkRTRXJrTUFBQUJiZWt0RmhFODIzLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjM3Ij7vvIznm7Tnur/lnKjkuKTlnZDmoIfovbTkuIrnmoTmiKrot53liIbliKvkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvN0QvckJBQ0oxVEhVbkNDQkVBdEFBQUJXWkF1bVZNMTc1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS83RC9yQkFDSjFUSFVuQ0NCRUF0QUFBQldaQXVtVk0xNzUucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjkiPuOAgTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BOS83Ni9yQkFDRkZUSFVuQ3d1MmpxQUFBQlVSTXJTMVU4NTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E5Lzc2L3JCQUNGRlRIVW5Dd3UyanFBQUFCVVJNclMxVTg1MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyOSI+77yO6Iul55u4562J77yM5YiZ5pyJPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFLzdEL3JCQUNKMVRIVW5DQ0JFQXRBQUFCV1pBdW1WTTE3NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvN0QvckJBQ0oxVEhVbkNDQkVBdEFBQUJXWkF1bVZNMTc1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI5Ij7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTkvNzYvckJBQ0ZGVEhVbkN3dTJqcUFBQUJVUk1yUzFVODUxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BOS83Ni9yQkFDRkZUSFVuQ3d1MmpxQUFBQlVSTXJTMVU4NTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjkiPu+8jOWNs2HvvJ1i77yOPGJyPue7vOWQiCgxKSgyKeWPr+efpe+8jOiLpTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS80MC9yQkFDSmxUSFVuQ1J5bXotQUFBQlVJM3VUQ3c1ODUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFLzQwL3JCQUNKbFRIVW5DUnltei1BQUFCVUkzdVRDdzU4NS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIxNiI+77yLPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzcyL0IxL3JCQUNFMVRIVW5DaDNMR05BQUFCZHdLbDRKdzIzOS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzIvQjEvckJBQ0UxVEhVbkNoM0xHTkFBQUJkd0tsNEp3MjM5LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjE2Ij7vvIs8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvN0QvckJBQ0oxVEhVbkNBNS1KREFBQUFfN01TaFRzMTExLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS83RC9yQkFDSjFUSFVuQ0E1LUpEQUFBQV83TVNoVHMxMTEucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNyI+77ydMCAoPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E5Lzc2L3JCQUNGRlRIVW5DRDJGMEdBQUFCWENNWktNbzY2Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTkvNzYvckJBQ0ZGVEhVbkNEMkYwR0FBQUJYQ01aS01vNjYyLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjE2Ij7iiaAwKeihqOekuueahOebtOe6v+WcqOS4pOWdkOagh+i9tOS4iueahOaIqui3neebuOetie+8jOWImTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Mi9CMS9yQkFDRTFUSFVuQ2hsbnZVQUFBQkg3WU1sa0U2MzgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzcyL0IxL3JCQUNFMVRIVW5DaGxudlVBQUFCSDdZTWxrRTYzOC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI4Ij7vvJ1i5oiWY++8nTDvvI48YnI+PC9wPg==