本课配套习题挑战模式1/5
与直线关于
轴对称的直线的方程为( )
A: |
B: |
C: |
D: |
- 提示1:PHA+55S75Zu+77yM5YCf5Yqp5Zu+5b2i5YiG5p6QPC9wPg==
- 提示2:PHA+5omA5rGC55u057q/5LiOPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzI5L3JCQUNGRlRJbWh5aF9GT3lBQUFCQ2lyQVk2WTg5MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMjkvckJBQ0ZGVEltaHloX0ZPeUFBQUJDaXJBWTZZODkwLnBuZyIgaGVpZ2h0PSIxNSIgd2lkdGg9IjEzIj7ovbTnmoTkuqTngrnkuI3lj5g8L3A+
- 提示3:PHA+5YW25pac546H5Li65Y6f55u057q/55qE55u45Y+N5pWwPC9wPg==
- 答案:QQ==
PHA+6Kej77ya55u057q/PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbWgzeHphaTVBQUFDcFRfdjNyMDMwNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRTkvckJBQ0oxVEltaDN4emFpNUFBQUNwVF92M3IwMzA1LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjEwMCI+5LiOPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzI5L3JCQUNGRlRJbWh5aF9GT3lBQUFCQ2lyQVk2WTg5MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMjkvckJBQ0ZGVEltaHloX0ZPeUFBQUJDaXJBWTZZODkwLnBuZyIgaGVpZ2h0PSIxNSIgd2lkdGg9IjEzIj7ovbTnmoTkuqTngrnkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMUUvckJBQ0UxVEltaDNDT1dickFBQUN0XzcyTElNNTcyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8xRS9yQkFDRTFUSW1oM0NPV2JyQUFBQ3RfNzJMSU01NzIucG5nIiBoZWlnaHQ9IjQ1IiB3aWR0aD0iNTIiPu+8jOWFs+S6jjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yOS9yQkFDRkZUSW1oeWhfRk95QUFBQkNpckFZNlk4OTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzI5L3JCQUNGRlRJbWh5aF9GT3lBQUFCQ2lyQVk2WTg5MC5wbmciIGhlaWdodD0iMTUiIHdpZHRoPSIxMyI+6L205a+556ew55qE55u057q/55qE5pac546H5Li677yaPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzI5L3JCQUNGRlRJbWgzUmxoMm1BQUFCZ1dWZmVHTTU5Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMjkvckJBQ0ZGVEltaDNSbGgybUFBQUJnV1ZmZUdNNTkyLnBuZyIgaGVpZ2h0PSI0MSIgd2lkdGg9IjE2Ij7vvIw8YnI+5omA5Lul55u057q/PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbWgzeHphaTVBQUFDcFRfdjNyMDMwNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRTkvckJBQ0oxVEltaDN4emFpNUFBQUNwVF92M3IwMzA1LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjEwMCI+5YWz5LqOPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzI5L3JCQUNGRlRJbWh5aF9GT3lBQUFCQ2lyQVk2WTg5MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMjkvckJBQ0ZGVEltaHloX0ZPeUFBQUJDaXJBWTZZODkwLnBuZyIgaGVpZ2h0PSIxNSIgd2lkdGg9IjEzIj7ovbTlr7nnp7DnmoTnm7Tnur/nmoTmlrnnqIvkuLrvvJo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUEvckJBQ0psVEltaDJTYUx2d0FBQURyRERXdkdvMjg2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BQS9yQkFDSmxUSW1oMlNhTHZ3QUFBRHJERFd2R28yODYucG5nIiBoZWlnaHQ9IjQ1IiB3aWR0aD0iOTIiPu+8jOWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FOS9yQkFDSjFUSW1oMlR2YTg2QUFBQ21oTkNEb0UyMjUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbWgyVHZhODZBQUFDbWhOQ0RvRTIyNS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIxMDAiPi48L3A+
本课配套习题挑战模式2/5
圆C:(x+1)2+(y-3)2=9上有两点P,Q关于直线x+my+4=0对称,则m等于( )
A: |
B: |
C: -1 |
D: 1 |
- 提示1:PHA+55S75Zu+5YiG5p6QPC9wPg==
- 提示2:PHA+5ZyG5b+D5Zyo55u057q/eCtteSs0PTDkuIo8L3A+
- 提示3:PHA+5Luj5YC86K6h566XPC9wPg==
- 答案:Qw==
PHA+6Kej5p6Q77ya55Sx6aKY5oSP5YiG5p6Q5Y+v55+l5ZyG5b+DPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzI5L3JCQUNGRlRJbWlXd3h5Q2FBQUFCa1VwZGFRYzkzNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMjkvckJBQ0ZGVEltaVd3eHlDYUFBQUJrVXBkYVFjOTM3LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjQwIj7lnKjnm7Tnur88aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUEvckJBQ0psVEltaVdDZDBDakFBQUNsbWhwdFY0NjcyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9BQS9yQkFDSmxUSW1pV0NkMENqQUFBQ2xtaHB0VjQ2NzIucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iOTMiPuS4ii7lsIbngrk8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMjkvckJBQ0ZGVEltaVd3eHlDYUFBQUJrVXBkYVFjOTM3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yOS9yQkFDRkZUSW1pV3d4eUNhQUFBQmtVcGRhUWM5MzcucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNDAiPuS7o+WFpeebtOe6v+aWueeoi+WPr+W+lzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FOS9yQkFDSjFUSW1pWHhwdDBJQUFBQmkyc2dJY2M5MTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbWlYeHB0MElBQUFCaTJzZ0ljYzkxMC5wbmciIGhlaWdodD0iMTkiIHdpZHRoPSI0OCI+Ljxicj7mlYVD5q2j56GuLjxicj48L3A+
本课配套习题挑战模式3/5
点P(-1,1)关于直线的对称点是Q(3,-1),则
、
的值依次是( )
A: -2,2 |
B: 2,-2 |
C: |
D: |
- 提示1:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbW9ueWhwZDZBQUFCal9XcHhUNDU0OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRTkvckJBQ0oxVEltb255aHBkNkFBQUJqX1dweFQ0NTQ5LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjI3Ij7nmoTkuK3ngrnlnKjnm7Tnur/kuIo8L3A+
- 提示2:PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbW9ueWhwZDZBQUFCal9XcHhUNDU0OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRTkvckJBQ0oxVEltb255aHBkNkFBQUJqX1dweFQ0NTQ5LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjI3Ij7lnoLnm7Tkuo7lt7Lnn6Xnm7Tnur88L3A+
- 提示3:PHA+5Luj5YWl77yM5b6X5Yiw5pa556iL57uE5bm25rGC6KejPC9wPg==
- 答案:Qg==
PHA+6Kej5p6Q77yaPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbW9ueWhwZDZBQUFCal9XcHhUNDU0OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRTkvckJBQ0oxVEltb255aHBkNkFBQUJqX1dweFQ0NTQ5LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjI3Ij7nmoTkuK3ngrnkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMUYvckJBQ0UxVEltb21SOUw0c0FBQUNYdllPT2kwMDA1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8xRi9yQkFDRTFUSW1vbVI5TDRzQUFBQ1h2WU9PaTAwMDUucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNDkiPu+8jOWImeaciTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yOS9yQkFDRkZUSW1vbWpNVXVGQUFBQjNGeURIOHMzOTgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzI5L3JCQUNGRlRJbW9tak1VdUZBQUFCM0Z5REg4czM5OC5wbmciIGhlaWdodD0iMTkiIHdpZHRoPSI2MCI+77yIMe+8ie+8jDwvcD48cD7lj4g8c3BhbiBjbGFzcz0ibWF0aHF1aWxsLXJlbmRlcmVkLW1hdGgiIHN0eWxlPSJmb250LXNpemU6MjBweDsiPjxzcGFuIGNsYXNzPSJ0ZXh0YXJlYSI+PHRleHRhcmVhIGRhdGEtY2tlLWVkaXRhYmxlPSIxIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj48L3RleHRhcmVhPjwvc3Bhbj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI5Ij5rPC92YXI+PHN1YiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI2IiBtYXRocXVpbGwtYmxvY2staWQ9IjciPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEwIj5QPC92YXI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTEiPlE8L3Zhcj48L3N1Yj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTIiPj08L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEzIj7iiJI8L3NwYW4+PHNwYW4gY2xhc3M9ImZyYWN0aW9uIG5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTQiPjxzcGFuIGNsYXNzPSJudW1lcmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTUiPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxOCI+MTwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjE2Ij48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxOSI+YTwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7d2lkdGg6MCI+Jm5ic3A7PC9zcGFuPjwvc3Bhbj48L3NwYW4+PHNwYW4+Jm5ic3A7PC9zcGFuPu+8jOWNszxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjI4Ij48c3BhbiBjbGFzcz0ibnVtZXJhdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjI5Ij48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzIiPjI8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIzMCI+PHNwYW4gY2xhc3M9IiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjMzIj7iiJI8L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjM0Ij40PC9zcGFuPjwvc3Bhbj48c3BhbiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7d2lkdGg6MCI+Jm5ic3A7PC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjAiPj08L3NwYW4+PHNwYW4gY2xhc3M9InVuYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTMiPuKIkjwvc3Bhbj48c3BhbiBjbGFzcz0iZnJhY3Rpb24gbm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNCI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxNSI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE4Ij4xPC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iZGVub21pbmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTYiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE5Ij5hPC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+77yMPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjM3Ij7iiLQ8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzkiPmE8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNDAiPj08L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjQxIj4yPC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+77yM5Luj5YWl77yIMe+8ieW8j+W+l2I9LTLjgII8L3A+
本课配套习题挑战模式4/5
动点关于直线
的对称点是
,则
的最大值为( )
A: |
B: |
C: |
D: |
- 提示1:PHA+54K5PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzFGL3JCQUNFMVRJbXMyeXZUR2pBQUFDMTBfamlNTTM5Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMUYvckJBQ0UxVEltczJ5dlRHakFBQUMxMF9qaU1NMzk3LnBuZyIgaGVpZ2h0PSIyMCIgd2lkdGg9IjEwMCI+5Zyo5Lul5Y6f54K55Li65ZyG5b+D55qE5Y2V5L2N5ZyG5LiKPC9wPg==
- 提示2:PHA+6K6h566X5Y6f54K55Yiw55u057q/PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJBL3JCQUNGRlRJbXMzeTdEdmZBQUFCMHl1Mmxuczc5Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkEvckJBQ0ZGVEltczN5N0R2ZkFBQUIweXUybG5zNzk2LnBuZyIgaGVpZ2h0PSIyMCIgd2lkdGg9IjU1Ij7nmoTot53nprvvvIzliKTmlq3lnIbkuI7nm7Tnur/nmoTkvY3nva7lhbPns7s8L3A+
- 提示3:PHA+6K6h566X54K5PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FCL3JCQUNKbFRJbXM2Z2lrS29BQUFCSWJ4SGt3czQ1Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUIvckJBQ0psVEltczZnaWtLb0FBQUJJYnhIa3dzNDU2LnBuZyIgaGVpZ2h0PSIxNyIgd2lkdGg9IjE2Ij7kuI7nm7Tnur88aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkEvckJBQ0ZGVEltczN5N0R2ZkFBQUIweXUybG5zNzk2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zM3k3RHZmQUFBQjB5dTJsbnM3OTYucG5nIiBoZWlnaHQ9IjIwIiB3aWR0aD0iNTUiPueahOi3neemuzwvcD4=
- 提示4:PHA+57uT5ZCI5Zu+5b2iLOiuoeeulzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zM3drYWVXQUFBQmRqclk2ZjAwNDIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJBL3JCQUNGRlRJbXMzd2thZVdBQUFCZGpyWTZmMDA0Mi5wbmciIGhlaWdodD0iMjMiIHdpZHRoPSIzMSI+55qE5pyA5aSn5YC8PC9wPg==
- 答案:RA==
PHA+6Kej5p6Q77ya5L6d6aKY5oSP55+l77yM5Yqo54K5PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzFGL3JCQUNFMVRJbXMyeXZUR2pBQUFDMTBfamlNTTM5Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMUYvckJBQ0UxVEltczJ5dlRHakFBQUMxMF9qaU1NMzk3LnBuZyIgaGVpZ2h0PSIyMCIgd2lkdGg9IjEwMCI+5Zyo5Lul5Y6f54K55Li65ZyG5b+D55qE5Y2V5L2N5ZyG5LiK77yM5Y6f54K5PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbXM3d001SE1BQUFCSkJLZkI1RTA2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRTkvckJBQ0oxVEltczd3TTVITUFBQUJKQktmQjVFMDYzLnBuZyIgaGVpZ2h0PSIxOSIgd2lkdGg9IjE2Ij7liLDnm7Tnur88aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkEvckJBQ0ZGVEltczN5N0R2ZkFBQUIweXUybG5zNzk2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zM3k3RHZmQUFBQjB5dTJsbnM3OTYucG5nIiBoZWlnaHQ9IjIwIiB3aWR0aD0iNTUiPueahOi3neemuzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FOS9yQkFDSjFUSW1zNmhFbDl4QUFBRHd3Y3pER0k1OTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbXM2aEVsOXhBQUFEd3djekRHSTU5Mi5wbmciIGhlaWdodD0iNDciIHdpZHRoPSIxNTIiPu+8jOaJgOS7peebtOe6vzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zM3k3RHZmQUFBQjB5dTJsbnM3OTYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJBL3JCQUNGRlRJbXMzeTdEdmZBQUFCMHl1Mmxuczc5Ni5wbmciIGhlaWdodD0iMjAiIHdpZHRoPSI1NSI+5LiO5Y2V5L2N5ZyG5ZyGPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNFL0U5L3JCQUNKMVRJbXM3d001SE1BQUFCSkJLZkI1RTA2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRTkvckJBQ0oxVEltczd3TTVITUFBQUJKQktmQjVFMDYzLnBuZyIgaGVpZ2h0PSIxOSIgd2lkdGg9IjE2Ij7nm7jnprsu6K6+5Yqo54K5PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FCL3JCQUNKbFRJbXM2Z2lrS29BQUFCSWJ4SGt3czQ1Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUIvckJBQ0psVEltczZnaWtLb0FBQUJJYnhIa3dzNDU2LnBuZyIgaGVpZ2h0PSIxNyIgd2lkdGg9IjE2Ij7kuI7nm7Tnur88aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkEvckJBQ0ZGVEltczN5N0R2ZkFBQUIweXUybG5zNzk2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zM3k3RHZmQUFBQjB5dTJsbnM3OTYucG5nIiBoZWlnaHQ9IjIwIiB3aWR0aD0iNTUiPueahOi3neemu+S4ujxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83My8xRi9yQkFDRTFUSW1zNnhHR1IxQUFBQlFjbDVOeGsxODQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzFGL3JCQUNFMVRJbXM2eEdHUjFBQUFCUWNsNU54azE4NC5wbmciIGhlaWdodD0iMTkiIHdpZHRoPSIxNSI+77yM5YiZPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzFGL3JCQUNFMVRJbXM3akFfUXhBQUFDSUZiN3NYNDY0My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMUYvckJBQ0UxVEltczdqQV9ReEFBQUNJRmI3c1g0NjQzLnBuZyIgaGVpZ2h0PSIyMyIgd2lkdGg9IjYxIj4uIDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zNmh6R1BvQUFBQzRVOXpGbTQ1MDQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJBL3JCQUNGRlRJbXM2aHpHUG9BQUFDNFU5ekZtNDUwNC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIxNDciPizmiYDku6U8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvMkEvckJBQ0ZGVEltczN3a2FlV0FBQUJkanJZNmYwMDQyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zM3drYWVXQUFBQmRqclk2ZjAwNDIucG5nIiBoZWlnaHQ9IjIzIiB3aWR0aD0iMzEiPueahOacgOWkp+WAvOS4ujxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS8yQS9yQkFDRkZUSW1zNnpnc3YxQUFBQmxGeHRxTXc4MTcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0FBLzJBL3JCQUNGRlRJbXM2emdzdjFBQUFCbEZ4dHFNdzgxNy5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI1MiI+LuaJgOS7pemAiUQuPGJyPjwvcD4=
本课配套习题挑战模式5/5
不等式组
表示的平面区域为D,区域D关于直线的对称区域为E,
则区域D和E中距离最近的两点间距离为( )
A: |
B: |
C: |
D: |
- 提示1:PHA+55S75Ye65Zu+5b2iPC9wPg==
- 提示2:PHA+5om+5Ye65Y+v6KGM5Z+fPC9wPg==
- 提示3:PHA+5bmz56e75a+556ew6L2055u057q/77yM6K6h566X5Y+v6KGM5Z+f5Lit55qE54K55Yiw55u057q/55qE6Led56a755qE5pyA5bCP5YC8PC9wPg==
- 提示4:PHA+5qC55o2u5Zu+5b2i5YiG5p6QPC9wPg==
- 答案:Qw==
PHA+PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0FCL3JCQUNKbFRJbTA3RFJPeEdBQUNiWVhNRDMxRTgzNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvQUIvckJBQ0psVEltMDdEUk94R0FBQ2JZWE1EMzFFODM1LnBuZyIgaGVpZ2h0PSIxOTAiIHdpZHRoPSIyNTMiPjxicj7op6PmnpDvvJrlpoLlm77lj6/ooYzln5/kuLrpmLTlvbHpg6jliIbvvIw8YnI+55Sx5YW25Yeg5L2V5oSP5LmJ5Li65Yy65Z+fROeahOeCuUHvvIgw77yMMe+8ieWIsOWvueensOi9tOeahOi3neemu+eahOS4pOWAjeWNs+S4uuaJgOaxgu+8jDxicj7nlLHngrnliLDnm7Tnur/nmoTot53nprvlhazlvI/lvpfvvJpkPTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRS9FQS9yQkFDSjFUSW0wN2lqclBGQUFBQjR2b2VCT00xMjYucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VBL3JCQUNKMVRJbTA3aWpyUEZBQUFCNHZvZUJPTTEyNi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIzNyI+77yMPGJyPuWImeWMuuWfn0TkuK3nmoTngrnkuI7ljLrln59F5Lit55qE54K55LmL6Ze055qE5pyA6L+R6Led56a7562J5LqOMsOXPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNFL0VBL3JCQUNKMVRJbTA3aWpyUEZBQUFCNHZvZUJPTTEyNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0UvRUEvckJBQ0oxVEltMDdpanJQRkFBQUI0dm9lQk9NMTI2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjM3Ij49PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzFGL3JCQUNFMVRJbTA3aXF6aC1BQUFCM1I1Z0xkbzE0NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvMUYvckJBQ0UxVEltMDdpcXpoLUFBQUIzUjVnTGRvMTQ1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjM3Ij7vvIw8YnI+5pWF6YCJQ++8jjxicj48L3A+