本课配套习题挑战模式1/4
已知为R上的可导函数,当
时,
则函数
的零点个数为( )
A: 1 |
B: 2 |
C: 0 |
D: 0或2 |
- 提示1:PHA+5p6E6YCg5Ye95pWwPC9wPg==
- 提示2:PHA+5rGC5a+877yM6L+b6ICM5rGC5p6B5YC8PC9wPg==
- 答案:Qw==
PHA+6Kej77ya5Zug5Li65Ye95pWwPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzQ3LzU5L3JCQUNKbFRacHIyajd1dUpBQUFDTlVLTEU3bzA5Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNTkvckJBQ0psVFpwcjJqN3V1SkFBQUNOVUtMRTdvMDk2LnBuZyIgaGVpZ2h0PSIyMiIgd2lkdGg9IjYyIj7kuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvOUIvckJBQ0oxVFpwcjNDc0JtWUFBQUJLUGxUN2tvMzMxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny85Qi9yQkFDSjFUWnByM0NzQm1ZQUFBQktQbFQ3a28zMzEucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iOSI+5LiK55qE5Y+v5a+85Ye95pWw77yM5b2TPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0I4L0NCL3JCQUNGRlRacHIzVG9Cb21BQUFCa1dmbFcyczM3Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQjgvQ0IvckJBQ0ZGVFpwcjNUb0JvbUFBQUJrV2ZsVzJzMzc2LnBuZyIgaGVpZ2h0PSIyMCIgd2lkdGg9IjM4Ij7ml7bvvIwgPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzlCL3JCQUNKMVRacHIzQWgyWjJBQUFDNlFXYzEwSTAxNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvOUIvckJBQ0oxVFpwcjNBaDJaMkFBQUM2UVdjMTBJMDE3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjExMiI+PGJyPuWNszxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny81OS9yQkFDSmxUWnByM2dHaXJRQUFBQzVfMDZqOFEzMjkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzU5L3JCQUNKbFRacHIzZ0dpclFBQUFDNV8wNmo4UTMyOS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMTciPuS7pDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny85Qi9yQkFDSjFUWnByM3h3Y3VGQUFBQ2dLNGZDbU0wMjgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzlCL3JCQUNKMVRacHIzeHdjdUZBQUFDZ0s0ZkNtTTAyOC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxMDgiPizljbM8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvN0MvMEYvckJBQ0UxVFpwcjd3MjBub0FBQUNjYUY3VnM4MDQ0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83Qy8wRi9yQkFDRTFUWnByN3cyMG5vQUFBQ2NhRjdWczgwNDQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNjgiPi48YnI+5omA5Lul5Y+v5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzdDLzBGL3JCQUNFMVRacHI2QjZuZG5BQUFESzFkSjB2QTQzNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvN0MvMEYvckJBQ0UxVFpwcjZCNm5kbkFBQURLMWRKMHZBNDM3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9Ijg1Ij7miJY8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQjgvQ0IvckJBQ0ZGVFpwcjJnc1VuZ0FBQURLWHhtQkVnNzMzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9COC9DQi9yQkFDRkZUWnByMmdzVW5nQUFBREtYeG1CRWc3MzMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iODUiPi48YnI+5omA5Lul5b2T5Ye95pWwPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0I4L0NCL3JCQUNGRlRacHIyU2RnSGhBQUFDeWpiUzYxczgyMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQjgvQ0IvckJBQ0ZGVFpwcjJTZGdIaEFBQUN5amJTNjFzODIwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEwMSI+5pe25Y2V6LCD6YCS5aKe77yM5omA5LulPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzU5L3JCQUNKbFRacHI3RDNnWWtBQUFDcjlVZ25fVTQ0OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNTkvckJBQ0psVFpwcjdEM2dZa0FBQUNyOVVnbl9VNDQ4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjEzMiI+Ljxicj7ljbPlvZM8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvOUIvckJBQ0oxVFpwcjJCTFduOUFBQUJvT0NHa3g4MTA3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny85Qi9yQkFDSjFUWnByMkJMV245QUFBQm9PQ0dreDgxMDcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDUiPuaXtjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Qy8wRi9yQkFDRTFUWnByNlRNcWVDQUFBQ01BTTRuX1U3NTIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzdDLzBGL3JCQUNFMVRacHI2VE1xZUNBQUFDTUFNNG5fVTc1Mi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI3MSI+Ljxicj7lkIznkIblvZM8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvOUIvckJBQ0oxVFpwcjd5XzBmdUFBQUJwVzBfRnN3MzM3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny85Qi9yQkFDSjFUWnByN3lfMGZ1QUFBQnBXMF9Gc3czMzcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDUiPuaXtjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Qy8wRi9yQkFDRTFUWnByX2dJZVBoQUFBQ0p4azRRc0UyODcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzdDLzBGL3JCQUNFMVRacHJfZ0llUGhBQUFDSnhrNFFzRTI4Ny5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI3MSI+Ljxicj7lj4jlm6DkuLrlh73mlbA8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvN0MvMEYvckJBQ0UxVFpwcjd6V05GaEFBQUMyNy1FNVJJMTE2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Qy8wRi9yQkFDRTFUWnByN3pXTkZoQUFBQzI3LUU1UkkxMTYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTI5Ij7lj6/ljJbkuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQjgvQ0IvckJBQ0ZGVFpwcjZnVVdkc0FBQURDM1gxVXZVNDU4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9COC9DQi9yQkFDRkZUWnByNmdVV2RzQUFBREMzWDFVdlU0NTgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTE1Ij4uPGJyPuaJgOS7peW9kzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny85Qi9yQkFDSjFUWnByMkJMV245QUFBQm9PQ0dreDgxMDcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzQ3LzlCL3JCQUNKMVRacHIyQkxXbjlBQUFCb09DR2t4ODEwNy5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI0NSI+5pe2PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0I4L0NCL3JCQUNGRlRacHI3elduZmlBQUFDTFRVS0QxVTU2Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQjgvQ0IvckJBQ0ZGVFpwcjd6V25maUFBQUNMVFVLRDFVNTYyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjcyIj4s5Y2z5LiOPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzQ3LzU5L3JCQUNKbFRacHI3d2JmcDRBQUFCTHdVYXJ0QTcwNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvNTkvckJBQ0psVFpwcjd3YmZwNEFBQUJMd1VhcnRBNzA1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjExIj7ovbTmsqHmnInkuqTngrnvvJvlvZM8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNDcvOUIvckJBQ0oxVFpwcjd5XzBmdUFBQUJwVzBfRnN3MzM3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC80Ny85Qi9yQkFDSjFUWnByN3lfMGZ1QUFBQnBXMF9Gc3czMzcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDUiPuaXtjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC80Ny85Qi9yQkFDSjFUWnByN0RZRWhUQUFBQ0tIMEZ4X1EwOTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzQ3LzlCL3JCQUNKMVRacHI3RFlFaFRBQUFDS0gwRnhfUTA5MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI3MiI+Ljxicj7miYDku6Xlh73mlbA8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvN0MvMEYvckJBQ0UxVFpwcjd6V05GaEFBQUMyNy1FNVJJMTE2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83Qy8wRi9yQkFDRTFUWnByN3pXTkZoQUFBQzI3LUU1UkkxMTYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTI5Ij7nmoTpm7bngrnkuKrmlbDkuLowLjxicj48L3A+
本课配套习题挑战模式2/4
已知函数h(x)=ƒ (x)g(x) ,x∈(0,3】,g(x)≠0 ,对任意x∈(0,3],
ƒ (x)g′(x)>ƒ ′(x)g(x) 恒成立,则( )
A: 函数h(x)有最大值也有最小值 |
B: 函数h(x)只有最小值 |
C: 函数h(x)只有最大值 |
D: 函数h(x)没有最大值也没有最小值 |
- 提示1:PHA+5a+55Ye95pWwPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+aDwvdmFyPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjUiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iNiI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iOCI+eDwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPik8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4gPC9zcGFuPuaxguWvvDwvcD4=
- 提示2:PHA+5Yip55So5a+85pWw6K6o6K665Ye95pWw55qE5Y2V6LCD5oCn5LiO5p6B5YC8PC9wPg==
- 答案:Qg==
PHA+6Kej77ya5Ye95pWwPHNwYW4gY2xhc3M9Im1hdGhxdWlsbC1yZW5kZXJlZC1tYXRoIiBzdHlsZT0iZm9udC1zaXplOjIwcHg7Ij48c3BhbiBjbGFzcz0idGV4dGFyZWEiPjx0ZXh0YXJlYSBkYXRhLWNrZS1lZGl0YWJsZT0iMSIgY29udGVudGVkaXRhYmxlPSJmYWxzZSI+PC90ZXh0YXJlYT48L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNCI+aDwvdmFyPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjUiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iNiI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNyI+eDwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPik8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI4Ij49PC9zcGFuPjxzcGFuIGNsYXNzPSJmcmFjdGlvbiBub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjkiPjxzcGFuIGNsYXNzPSJudW1lcmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTAiPjx2YXIgY2xhc3M9ImZsb3JpbiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjEzIj7GkjwvdmFyPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTMiPiZuYnNwOzwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNCI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMS4wNSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4oPC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxNSI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTYiPng8L3Zhcj48L3NwYW4+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMS4wNSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4pPC9zcGFuPjwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImRlbm9taW5hdG9yIiBtYXRocXVpbGwtYmxvY2staWQ9IjExIj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNyI+ZzwvdmFyPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE4Ij48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPig8L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtYmxvY2staWQ9IjE5Ij48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIyMCI+eDwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPik8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3BhbiBzdHlsZT0iZGlzcGxheTppbmxpbmUtYmxvY2s7d2lkdGg6MCI+Jm5ic3A7PC9zcGFuPjwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjEiPiw8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjIiPng8L3Zhcj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjMiPuKIiDwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjgiPu+8iDwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzAiPjA8L3NwYW4+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjMyIj4sPC9zcGFuPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIzMyI+Mzwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMjkiPuOAkTwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzYiPiw8L3NwYW4+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iMzciPmc8L3Zhcj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIzOCI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMS4wNSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4oPC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWJsb2NrLWlkPSIzOSI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNDAiPng8L3Zhcj48L3NwYW4+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMS4wNSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4pPC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iYmluYXJ5LW9wZXJhdG9yIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNDIiPuKJoDwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNDQiPjA8L3NwYW4+PC9zcGFuPjxzcGFuPiA8L3NwYW4+77yM5a+55Lu75oSPeOKIiO+8iDDvvIwzXe+8jDxicj48L3A+PHA+Zu+8iHjvvIln4oCy77yIeO+8ie+8nmbigLLvvIh477yJZ++8iHjvvInmgZLmiJDnq4vvvIw8YnI+5pWF5pyJIDxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjUxIj5oPC92YXI+PHN1cCBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI0NyIgbWF0aHF1aWxsLWJsb2NrLWlkPSI0OCI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjUwIj7igLI8L3NwYW4+PC9zdXA+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNSI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMS4wNSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4oPC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWJsb2NrLWlkPSI2Ij48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI3Ij54PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KTwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjgiPj08L3NwYW4+PHNwYW4gY2xhc3M9ImZyYWN0aW9uIG5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iOSI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMCI+PHZhciBjbGFzcz0iZmxvcmluIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNjUiPsaSPC92YXI+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI2NSI+Jm5ic3A7PC9zcGFuPjxzdXAgY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNjEiIG1hdGhxdWlsbC1ibG9jay1pZD0iNjIiPjxzcGFuIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI2NCI+4oCyPC9zcGFuPjwvc3VwPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjE0Ij48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPig8L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtYmxvY2staWQ9IjE1Ij48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSIxNiI+eDwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPik8L3NwYW4+PC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjY2Ij5nPC92YXI+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNjciPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iNjgiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjY5Ij54PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KTwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjcwIj7iiJI8L3NwYW4+PHZhciBjbGFzcz0iZmxvcmluIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNzEiPsaSPC92YXI+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI3MSI+Jm5ic3A7PC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjcyIj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPig8L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtYmxvY2staWQ9IjczIj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI3NCI+eDwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPik8L3NwYW4+PC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjgzIj5nPC92YXI+PHN1cCBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI3OCIgbWF0aHF1aWxsLWJsb2NrLWlkPSI3OSI+PHNwYW4gbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjgyIj7igLI8L3NwYW4+PC9zdXA+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iODQiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iODUiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9Ijg2Ij54PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KTwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJkZW5vbWluYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMSI+PHZhciBtYXRocXVpbGwtY29tbWFuZC1pZD0iNTgiPmc8L3Zhcj48c3VwIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjU0IiBtYXRocXVpbGwtYmxvY2staWQ9IjU1Ij48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNTciPjI8L3NwYW4+PC9zdXA+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTgiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTkiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIwIj54PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KTwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjxzcGFuIGNsYXNzPSJiaW5hcnktb3BlcmF0b3IiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI4NyI+Jmx0Ozwvc3Bhbj48c3BhbiBtYXRocXVpbGwtY29tbWFuZC1pZD0iODkiPjA8L3NwYW4+PC9zcGFuPjxzcGFuPiA8L3NwYW4+PGJyPuKItDxzcGFuIGNsYXNzPSJtYXRocXVpbGwtcmVuZGVyZWQtbWF0aCIgc3R5bGU9ImZvbnQtc2l6ZToyMHB4OyI+PHNwYW4gY2xhc3M9InRleHRhcmVhIj48dGV4dGFyZWEgZGF0YS1ja2UtZWRpdGFibGU9IjEiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjwvdGV4dGFyZWE+PC9zcGFuPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjkwIj5oPC92YXI+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNSI+PHNwYW4gc3R5bGU9InRyYW5zZm9ybTogc2NhbGUoMSwgMS4wNSk7IiBjbGFzcz0ic2NhbGVkIHBhcmVuIj4oPC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWJsb2NrLWlkPSI2Ij48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI3Ij54PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KTwvc3Bhbj48L3NwYW4+PHNwYW4gY2xhc3M9ImJpbmFyeS1vcGVyYXRvciIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjgiPj08L3NwYW4+PHNwYW4gY2xhc3M9ImZyYWN0aW9uIG5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iOSI+PHNwYW4gY2xhc3M9Im51bWVyYXRvciIgbWF0aHF1aWxsLWJsb2NrLWlkPSIxMCI+PHZhciBjbGFzcz0iZmxvcmluIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iNzEiPsaSPC92YXI+PHNwYW4gc3R5bGU9ImRpc3BsYXk6aW5saW5lLWJsb2NrO3dpZHRoOjAiIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI3MSI+Jm5ic3A7PC9zcGFuPjxzcGFuIGNsYXNzPSJub24tbGVhZiIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjcyIj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPig8L3NwYW4+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtYmxvY2staWQ9IjczIj48dmFyIG1hdGhxdWlsbC1jb21tYW5kLWlkPSI3NCI+eDwvdmFyPjwvc3Bhbj48c3BhbiBzdHlsZT0idHJhbnNmb3JtOiBzY2FsZSgxLCAxLjA1KTsiIGNsYXNzPSJzY2FsZWQgcGFyZW4iPik8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3BhbiBjbGFzcz0iZGVub21pbmF0b3IiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTEiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjU4Ij5nPC92YXI+PHNwYW4gY2xhc3M9Im5vbi1sZWFmIiBtYXRocXVpbGwtY29tbWFuZC1pZD0iMTgiPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KDwvc3Bhbj48c3BhbiBjbGFzcz0ibm9uLWxlYWYiIG1hdGhxdWlsbC1ibG9jay1pZD0iMTkiPjx2YXIgbWF0aHF1aWxsLWNvbW1hbmQtaWQ9IjIwIj54PC92YXI+PC9zcGFuPjxzcGFuIHN0eWxlPSJ0cmFuc2Zvcm06IHNjYWxlKDEsIDEuMDUpOyIgY2xhc3M9InNjYWxlZCBwYXJlbiI+KTwvc3Bhbj48L3NwYW4+PC9zcGFuPjxzcGFuIHN0eWxlPSJkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0aDowIj4mbmJzcDs8L3NwYW4+PC9zcGFuPjwvc3Bhbj48c3Bhbj4mbmJzcDs8L3NwYW4+5Zyo77yIMO+8jDNd5LiK5piv5YeP5Ye95pWw77yM5pWF5b2TeD0z5pe277yMaO+8iHjvvInmnInmnIDlsI/lgLzkuLpo77yIM++8ie+8jOayoeacieacgOWkp+WAvO+8jDxicj7mlYXpgIlC77yOPC9wPg==
本课配套习题挑战模式3/4
已知函数,则
与
的大小关系为( )
A: |
B: |
C: |
D:
|
- 提示1:PHA+5a+55Ye95pWw5rGC5a+8PC9wPg==
- 提示2:PHA+6K6h566X5a+85pWw5Li66Zu255qE6Ieq5Y+Y6YeP55qE5YC8PC9wPg==
- 提示3:PHA+56Gu5a6a5Y2V6LCD5Yy66Ze077yM5Lul5Y+K5Ye95pWw55qE5pyA5aSn5YC8PC9wPg==
- 答案:QQ==
PHA+6Kej77yaPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzczLzhFL3JCQUNFMVRKd21IaHduOWtBQUFHRE5GUmFaTTk4MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzMvOEUvckJBQ0UxVEp3bUhod245a0FBQUdETkZSYVpNOTgxLnBuZyIgaGVpZ2h0PSI0MSIgd2lkdGg9IjMxMyI+77yMPGJyPjwvcD48cD7ku6Q8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvREMvckJBQ0ZGVEp3bUd4enU3dkFBQUNZVS15T2lNODQwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BQS9EQy9yQkFDRkZUSndtR3h6dTd2QUFBQ1lVLXlPaU04NDAucG5nIiBoZWlnaHQ9IjI3IiB3aWR0aD0iNjciPuW+lzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BQS9EQy9yQkFDRkZUSndtR2c5X2piQUFBQ1dBZnZteG81NDcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0FBL0RDL3JCQUNGRlRKd21HZzlfamJBQUFDV0Fmdm14bzU0Ny5wbmciIGhlaWdodD0iNDEiIHdpZHRoPSI4NyI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNGLzE2L3JCQUNKbFRKd21HeGYyQ1lBQUFMcXNZLThfRTQyNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0YvMTYvckJBQ0psVEp3bUd4ZjJDWUFBQUxxc1ktOF9FNDI2LnBuZyIgaGVpZ2h0PSI0NSIgd2lkdGg9IjQ0OSI+PGJyPjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8zRi8xNi9yQkFDSmxUSndtSHpJUmxhQUFBRWtLdjBpMlk2NjgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNGLzE2L3JCQUNKbFRKd21IeklSbGFBQUFFa0t2MGkyWTY2OC5wbmciIGhlaWdodD0iMzEiIHdpZHRoPSIyMzMiPjxicj48L3A+PHA+5Y+IPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzNGLzU2L3JCQUNKMVRKd21HU3BDLXVBQUFEOGVTUjI0ODk2Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvM0YvNTYvckJBQ0oxVEp3bUdTcEMtdUFBQUQ4ZVNSMjQ4OTY2LnBuZyIgaGVpZ2h0PSIyOSIgd2lkdGg9IjE5MyI+PGJyPjwvcD4=
本课配套习题挑战模式4/4
若函数在R上可导,且满足
,则( )
A: |
B: |
C: |
D: |
- 提示1:PHA+5ZWG55qE5a+85pWw5rOV5YiZ5Y+v5Lqn55Sf5YeP5Y+377yM5Y+v5p6E6YCg5Ye95pWwPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0FBL0RDL3JCQUNGRlRKd3B2QWxrRmNBQUFDcm1WNl9HUTI1NS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvREMvckJBQ0ZGVEp3cHZBbGtGY0FBQUNybVY2X0dRMjU1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9Ijg3Ij48L3A+
- 提示2:PHA+5a+5PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNGLzE2L3JCQUNKbFRKd3B2anZxY3BBQUFCZTJwNXY5STU0MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0YvMTYvckJBQ0psVEp3cHZqdnFjcEFBQUJlMnA1djlJNTQwLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjQ0Ij7msYLlr7zvvIznoa7lrprlop7lh4/mgKc8L3A+
- 提示3:PHA+5qC55o2u5Y2V6LCD5oCn6L+b6KGM5Yik5patPC9wPg==
- 答案:QQ==
PHA+6Kej77ya55Sx5bey55+lPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0FBL0RDL3JCQUNGRlRKd3B2ZzJKS2hBQUFDZmlvak9rTTk0Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvREMvckJBQ0ZGVEp3cHZnMkpLaEFBQUNmaW9qT2tNOTQ2LnBuZyIgaGVpZ2h0PSIyNiIgd2lkdGg9IjkzIj48aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQUEvREMvckJBQ0ZGVEp3cHV3djNQZEFBQUZUUTM2eGJjOTMyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BQS9EQy9yQkFDRkZUSndwdXd2M1BkQUFBRlRRMzZ4YmM5MzIucG5nIiBoZWlnaHQ9IjIyIiB3aWR0aD0iMzEyIj7vvIw8YnI+PC9wPjxwPuiBlOaDs+WIsOWVhueahOWvvOaVsOazleWImeWPr+S6p+eUn+WHj+WPt++8jOWPr+aehOmAoOWHveaVsDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BQS9EQy9yQkFDRkZUSndwdkFsa0ZjQUFBQ3JtVjZfR1EyNTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0FBL0RDL3JCQUNGRlRKd3B2QWxrRmNBQUFDcm1WNl9HUTI1NS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4NyI+77yM5YiZPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNGLzE2L3JCQUNKbFRKd3B1eTBqYWJBQUFFck1NY1VxSTk5Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0YvMTYvckJBQ0psVEp3cHV5MGphYkFBQUVyTU1jVXFJOTkyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIxNiI+77yMPGJyPjwvcD48cD7mlYXnn6Xlh73mlbA8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvM0YvNTYvckJBQ0oxVEp3cHVEWnEwOEFBQUI0MHpYNlFRODMzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8zRi81Ni9yQkFDSjFUSndwdURacTA4QUFBQjQwelg2UVE4MzMucG5nIiBoZWlnaHQ9IjIyIiB3aWR0aD0iMzYiPuWcqDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83My84RS9yQkFDRTFUSndwdkFGTjF6QUFBQ0RaSTZsQzg3MDgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzczLzhFL3JCQUNFMVRKd3B2QUZOMXpBQUFDRFpJNmxDODcwOC5wbmciIGhlaWdodD0iMjIiIHdpZHRoPSI0OCI+5LiK5piv5aKe5Ye95pWw77yMPC9wPjxwPuaJgOS7peaciTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8zRi81Ni9yQkFDSjFUSndwdmpuSldEQUFBQ1ZCS3g4SDg2NjgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzNGLzU2L3JCQUNKMVRKd3B2am5KV0RBQUFDVkJLeDhIODY2OC5wbmciIGhlaWdodD0iMjIiIHdpZHRoPSI4MiI+PC9wPjxwPuWNszxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83My84RS9yQkFDRTFUSndwdlEtdVNEQUFBRUt6Z1dQczA5OTgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzczLzhFL3JCQUNFMVRKd3B2US11U0RBQUFFS3pnV1BzMDk5OC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOTEiPu+8jDwvcD48cD7mlYXpgInvvKHvvI48L3A+