本课配套习题挑战模式1/5
如图,正比例函数y=x与二次函数y=-x2+2x+3的图象都经过点A(2,m). 若二次函数图象的对称轴与正比例函数的图象相交于点B,与x轴相交于点C,点Q是x轴的正半轴上的一点,如果△OBC与△OAQ相似,点Q的坐标为( ).
、
A: (2,0),(,0) |
B: (﹣2,0),(,0) |
C: (﹣2,0),(,0) |
D: (2,0),(,0) |
- 提示1:PHA+6K6+Ue+8iHjvvIxv77yJ77yIeO+8njDvvIkuIOW9k3g9MeaXtuaxguWHuueCuULjgIFD55qE5Z2Q5qCH77yM5YaN55Sx4pazT0JD4oi94pazT0FR5ZKM4pazT0JD4oi94pazT1FB5pe277yM5YiG5Yir5rGC5b6X54K5UeeahOWdkOagh+WNs+WPry48L3A+
- 答案:QQ==
PHA+6Kej77ya6K6+Ue+8iHjvvIxv77yJ77yIeO+8njDvvIkuIOW9k3g9MeaXtu+8jDxpPnk8L2k+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ2L3JCQUNFMVB4eEdxaGdESE5BQUFCTTZVeGhrQTk1Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDYvckJBQ0UxUHh4R3FoZ0RITkFBQUJNNlV4aGtBOTUyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPjxpPng8L2k+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ2L3JCQUNFMVB4eEdxaGdESE5BQUFCTTZVeGhrQTk1Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDYvckJBQ0UxUHh4R3FoZ0RITkFBQUJNNlV4aGtBOTUyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7iiLQ8aT5CPC9pPigx77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ2L3JCQUNFMVB4eEdxaGdESE5BQUFCTTZVeGhrQTk1Mi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDYvckJBQ0UxUHh4R3FoZ0RITkFBQUJNNlV4aGtBOTUyLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPinvvIw8aT5jPC9pPigx77yMMCk8YnI+5b2T4pazT0JD4oi94pazT0FR5pe277yM5pyJPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEd1U09UTXVBQUFCYUV6UDR5STY4Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTgvckJBQ0ZGUHh4R3VTT1RNdUFBQUJhRXpQNHlJNjg2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDYvckJBQ0UxUHh4R3VpTmZXd0FBQUJvckt0TE1ZMDMwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ni9yQkFDRTFQeHhHdWlOZld3QUFBQm9yS3RMTVkwMzAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTkiPu+8jOW+l09RPTLvvIxR77yIMu+8jDDvvIk8YnI+5b2T4pazT0JD4oi94pazT1FB5pe277yM5pyJPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEd1U09hVUlBQUFDSUZiNV9lczc1Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTgvckJBQ0ZGUHh4R3VTT2FVSUFBQUNJRmI1X2VzNzU2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjYzIj7vvIzlvpc8aT5PUTwvaT7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTgvckJBQ0ZGUHh4R3JCNlhiSkFBQUJVR3ZLd3M0NTY0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhHckI2WGJKQUFBQlVHdkt3czQ1NjQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPu+8jDxpPlE8L2k+KDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhHckI2WGJKQUFBQlVHdkt3czQ1NjQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEdyQjZYYkpBQUFCVUd2S3dzNDU2NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yMMCk8YnI+4oi054K5UeeahOWdkOagh+aYrygy77yMMCnvvIwoPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEdyQjZYYkpBQUFCVUd2S3dzNDU2NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTgvckJBQ0ZGUHh4R3JCNlhiSkFBQUJVR3ZLd3M0NTY0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIwwKS48YnI+5pWF6YCJQeOAgjwvcD4=
本课配套习题挑战模式2/5
如图,二次函数y=-x2+x+的图象交x轴于A(-1,0),B(3,0),交y轴于C(0,),连结AC、BC. 直线BC交抛物线对称轴于点E,过E点作EN∥AB,交AC于点N. 二次函数图象的对称轴上确定一点F,使得以A,N,F为顶点的三角形与△ABC相似时,点F的坐标为( ).
A: (1,) |
B: (1,-) |
C: (1,-) |
D: (1,) |
- 提示1:PHA+5LulQe+8jE7vvIxG5Li66aG254K555qE5LiJ6KeS5b2i5LiO4pazQUJD55u45Ly85pyJ5LiJ56eN5oOF5Ya177yM4pGg6Iul4oigQUZOPTkwwrDikaHoi6XiiKBBTkY9OTDCsOKRouiLpeKIoEZBTj05MMKw77yM6ZKI5a+56L+Z56eN5oOF5Ya16L+b6KGM5YiG5p6Q5rGC6Kej5b6X5Ye654K5RueahOWdkOaghy48L3A+
- 答案:Qw==
PHA+6Kej77ya5aaC5Zu+77yM55Sx6aKY5oSP5Y+v55+lIHk9LTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhIREFLSWhWQUFBQmlRdjc0cmMzNTMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEhEQUtJaFZBQUFCaVF2NzRyYzM1My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNiI+eDxzdXA+Mjwvc3VwPis8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTgvckJBQ0ZGUHh4SEdDVUV4SkFBQUJzRG1NaXFzNTE1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhIR0NVRXhKQUFBQnNEbU1pcXM1MTUucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPngrPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7nmoTlr7nnp7DovbTkuLp4PTEu5LiU4oigQUNCPTkwwrAuPGJyPueUsULvvIgz77yMMO+8ieOAgUPvvIgw77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvIk8YnI+5Y+v5b6XeT08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEhBR2VJc0FBQUNzcmVMODBFMDI2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhISEFHZUlzQUFBQ3NyZUw4MEUwMjYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOTIiPu+8jDxicj7iiLVF54K55piv5oqb54mp57q/5a+556ew6L205LiO55u057q/QkPnmoTkuqTngrnvvIw8YnI+4oi1RUg9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEhHQ1VFeEpBQUFCc0RtTWlxczUxNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTgvckJBQ0ZGUHh4SEdDVUV4SkFBQUJzRG1NaXFzNTE1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0Ij7vvIxPQz08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhITHluS3VNQUFBY19LbmpWNXc1NzkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhMeW5LdU1BQUFjX0tualY1dzU3OS5wbmciIGFsdD0i6Z2S5p6c5a2m6ZmiIiBhbGlnbj0ibGVmdCIgaGVpZ2h0PSIxNjMiIGhzcGFjZT0iMTIiIHdpZHRoPSIxNTgiPu+8jEFDPTLvvIzkuJRFTuKIpUFC77yMPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhITERSN19XQUFBQnF3aE1YSmMwMjAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEhMRFI3X1dBQUFCcXdoTVhKYzAyMC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOSI+PTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhITERobkNoQUFBQmQyT29wNnc2MjMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEhMRGhuQ2hBQUFCZDJPb3A2dzYyMy5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOSI+PGJyPuWNszxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIS2l6NXBTQUFBQm1JY3FFelkyOTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhLaXo1cFNBQUFCbUljcUV6WTI5NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOSI+PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhIT3g2NE9BQUFBQjhBUGZhRUE3OTMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEhPeDY0T0FBQUFCOEFQZmFFQTc5My5wbmciIGhlaWdodD0iNjIiIHdpZHRoPSIyMyI+PC9wPjx0YWJsZSBjbGFzcz0iTXNvTm9ybWFsVGFibGUiIHN0eWxlPSJib3JkZXItY29sbGFwc2U6Y29sbGFwc2UiIGJvcmRlcj0iMCIgY2VsbHBhZGRpbmc9IjAiIGNlbGxzcGFjaW5nPSIwIj48dGJvZHk+PHRyPjx0ZCBzdHlsZT0id2lkdGg6LjNwdDtib3JkZXI6bm9uZTtib3JkZXItYm90dG9tOnNvbGlkIGJsYWNrIDEuMHB0OyAgcGFkZGluZzowY20gMGNtIC43NXB0IDBjbSIgbm93cmFwPSJub3dyYXAiIHdpZHRoPSIwIj48YnI+PC90ZD48L3RyPjx0cj48dGQgc3R5bGU9IndpZHRoOi4zcHQ7cGFkZGluZzouNzVwdCAwY20gMGNtIDBjbSIgbm93cmFwPSJub3dyYXAiIHdpZHRoPSIwIj48YnI+PC90ZD48L3RyPjwvdGJvZHk+PC90YWJsZT48cD7iiLRBTj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SFBBamMxZUFBQUJTWjVNSVg0MTg0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIUEFqYzFlQUFBQlNaNU1JWDQxODQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMPGJyPuKRoCDiiKBBRk49OTDCsO+8jDxicj7iiLVBTueahOS4reeCueWIsOWvueensOi9tOeahOi3neemu+Wkp+S6jjHvvIzogIw8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SE95Q3dTNEFBQUJEdVNtYjBnODY5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIT3lDd1M0QUFBQkR1U21iMGc4NjkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+QU49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhTaEgwVS1BQUFCTUMzWUdyazcxMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SFNoSDBVLUFBQUJNQzNZR3JrNzEzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8nDHvvIw8YnI+4oi05LulQU7kuLrnm7TlvoTnmoTlnIbkuI3kuI7lr7nnp7DovbTnm7jkuqTvvIw8YnI+4oi04oigQUZO4omgOTDCsO+8jOWNs+atpOaXtuS4jeWtmOWcqOespuWQiOadoeS7tueahEbngrkuPGJyPuKRoeKIoEFORj05MMKw77yM5b2T4oigTkFGPTYwwrDvvIzliJlG77yMSOmHjeWQiO+8jOatpOaXtuKIoEFORuKJoDkwwrDvvIw8YnI+5b2T4oigTkFGPTMwwrDvvIzliJlG77yMRemHjeWQiO+8jDxicj7mraTml7biiKBBTkbiiaA5MMKw77yM5Y2z5q2k5pe25LiN5a2Y5Zyo56ym5ZCI5p2h5Lu255qERueCue+8jDxicj7ikaIg4oigRkFOPTkwwrDvvIzkvZxBRuKKpUFO5Lqk5a+556ew6L205LqO54K5Ru+8jOatpOaXtu+8jOKIoEhBRj0zMMKw77yMQUg9Mu+8jEhGPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOC9yQkFDRkZQeHhIR0NVRXhKQUFBQnNEbU1pcXM1MTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEhHQ1VFeEpBQUFCc0RtTWlxczUxNS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNCI+77yMPGJyPkFGPTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOS9yQkFDRkZQeHhIU0JkaFRCQUFBQnZTUHdsUTQ0OTkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E5L3JCQUNGRlB4eEhTQmRoVEJBQUFCdlNQd2xRNDQ5OS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNCI+77yM6ICMQU49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhQQWpjMWVBQUFCU1o1TUlYNDE4NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SFBBamMxZUFBQUJTWjVNSVg0MTg0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7iiLTiiKBBRk49MzDCsO+8jDxicj7iiLTilrNBTkbiiL3ilrNBQkPvvIw8YnI+4oi0Ru+8iDHvvIwtPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0E4L3JCQUNGRlB4eEhHQ1VFeEpBQUFCc0RtTWlxczUxNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTgvckJBQ0ZGUHh4SEdDVUV4SkFBQUJzRG1NaXFzNTE1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0Ij7vvIkuPGJyPuaVhemAiUPjgII8L3A+
本课配套习题挑战模式3/5
已知:如图,一次函数y=-x-2的图象与二次函数y=2x2+2x-4的图象与x轴交于同一点A,且与y轴交于点B,设二次函数交y轴于点D,在x轴上有一点C,使以点A、B、C组成三角形与△ADB相似. C点的坐标是( ).
A: (-1,0)或(-4,0) |
B: (-4,0)或(-6,0) |
C: (-3,0)或(-5,0) |
D: (4,0)或(-6,0) |
- 提示1:PHA+5Yip55So5LiA5qyh5Ye95pWw6Kej5p6Q5byP5rGC5Ye654K5QueahOWdkOagh++8jOWIqeeUqOS6jOasoeWHveaVsOino+aekOW8j+axguWHuueCuUTnmoTlnZDmoIfvvIzlubbliKTmlq3lh7rilrNBT0LmmK/nrYnohbDnm7Top5LkuInop5LlvaLvvIzmoLnmja7nrYnohbDnm7Top5LkuInop5LlvaLnmoTmgKfotKjmsYLlh7pBQueahOmVv+W6pu+8jOKIoE9BQj3iiKBPQkE9NDXCsO+8jOeEtuWQjuagueaNruKWs0FCROS4reayoeaciTQ1wrDnmoTop5LlkoziiKBBQkQ9MTM1wrDliKTmlq3lh7riiKBCQUPlkoziiKBBQkTmmK/lr7nlupTop5LkuLoxMzXCsO+8jOS7juiAjOWIpOaWreWHuueCuUPlnKjngrlB55qE5bem6L6577yM5YaN5YiGQUPlkoxCRO+8jEFD5ZKMQULmmK/lr7nlupTovrnkuKTnp43mg4XlhrXvvIzmoLnmja7nm7jkvLzkuInop5LlvaLlr7nlupTovrnmiJDmr5TkvovliJflvI/msYLlh7pBQ+eahOmVv+W6pu+8jOWGjeaxguWHuk9D55qE6ZW/5bqm77yM5LuO6ICM5b6X6KejLjwvcD4=
- 答案:Qg==
PHA+6Kej77ya5LukeD0w77yM5LiA5qyh5Ye95pWw5LiOeei9tOeahOS6pOeCuULvvIgw77yMLTLvvInvvIw8YnI+5LqM5qyh5Ye95pWw5LiOeei9tOeahOS6pOeCueS4ukTvvIgw77yMLTTvvInvvIw8YnI+4oi04pazQU9C5piv562J6IWw55u06KeS5LiJ6KeS5b2i77yMQkQ9LTIt77yILTTvvIk9Mu+8jDxicj7iiLRBQj08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SHJUZmpJekFBQUNBd3FZS3dZMDAwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIclRmakl6QUFBQ0F3cVlLd1kwMDAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNzIiPj0yPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEg2aGp4dl9BQUFCa1F1U1hPRTM1NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SDZoanh2X0FBQUJrUXVTWE9FMzU0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvIziiKBPQUI94oigT0JBPTQ1wrDvvIw8YnI+4oi14pazQUJE5Lit77yM4oigQkFE44CB4oigQURC6YO95LiN562J5LqONDXCsO+8jOKIoEFCRD0xODDCsC00NcKwPTEzNcKw77yMPGJyPuKItOKIoEJBQ+WSjOKIoEFCROaYr+WvueW6lOinkuS4ujEzNcKw77yMPGJyPjxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhILUNkQjRHQUFBZ1JObVp2U2sxMTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEgtQ2RCNEdBQUFnUk5tWnZTazExMC5wbmciIGFsdD0i6Z2S5p6c5a2m6ZmiIiBhbGlnbj0ibGVmdCIgaGVpZ2h0PSIyMDMiIGhzcGFjZT0iMTIiIHdpZHRoPSIyNjUiPuKItOeCuUPlnKjngrlB55qE5bem6L6577yMPGJyPuKRoCBBQ+WSjEJE5piv5a+55bqU6L655pe277yM4oi14pazQURC4oi94pazQkNB77yMPGJyPuKItDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIX1NOZVV6QUFBQmo0MW04UDA1NDkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhfU05lVXpBQUFCajQxbThQMDU0OS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOSI+PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOS9yQkFDRkZQeHhILWpiejRYQUFBQldST28tM2M5MjEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E5L3JCQUNGRlB4eEgtamJ6NFhBQUFCV1JPby0zYzkyMS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOCI+PTHvvIw8YnI+4oi0QUM9QkQ9Mu+8jDxicj7iiLRPQz1PQStBQz0yKzI9NO+8jDxicj7ngrlD55qE5Z2Q5qCH5Li677yILTTvvIww77yJ77yMPGJyPuKRoSBBQ+WSjEFC5piv5a+55bqU6L655pe277yMPGJyPuKIteKWs0FEQuKIveKWs0NCQe+8jDxicj7iiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTkvckJBQ0ZGUHh4SF9oOTc1SUFBQUJqenJXMExBOTc1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOS9yQkFDRkZQeHhIX2g5NzVJQUFBQmp6clcwTEE5NzUucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTgiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SUNTNkZHNEFBQUJpTTdqSW9nMjM3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhJQ1M2Rkc0QUFBQmlNN2pJb2cyMzcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTkiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTkvckJBQ0ZGUHh4SUR4dzNBeEFBQUJqR0tJblpFOTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOS9yQkFDRkZQeHhJRHh3M0F4QUFBQmpHS0luWkU5NjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPu+8jDxicj7iiLRBQz08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SDZoanh2X0FBQUJrUXVTWE9FMzU0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhINmhqeHZfQUFBQmtRdVNYT0UzNTQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPkFCPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhINmhqeHZfQUFBQmtRdVNYT0UzNTQucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEg2aGp4dl9BQUFCa1F1U1hPRTM1NC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+w5cyPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEg2aGp4dl9BQUFCa1F1U1hPRTM1NC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SDZoanh2X0FBQUJrUXVTWE9FMzU0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj49NO+8jDxicj7iiLRPQz1PQStBQz0yKzQ9Nu+8jDxicj7iiLTngrlD55qE5Z2Q5qCH5Li677yILTbvvIww77yJ77yMPGJyPue7vOS4iuaJgOi/sO+8jOWcqHjovbTkuIrmnInkuIDngrlD77yILTTvvIww77yJ5oiW77yILTbvvIww77yJ77yM5L2/5Lul54K5QeOAgULjgIFD57uE5oiQ55qE5LiJ6KeS5b2i5LiO4pazQURC55u45Ly8Ljxicj7mlYXpgIlC44CCPC9wPg==
本课配套习题挑战模式4/5
已知,二次函数y=x2+x的图象经过点A(-5,0)和点B(3,4),且OA=OB,cot∠BAO=2. 过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,点P的坐标是( )。
A: (6,0)或(,0) |
B: (5,0)或(,0) |
C: (6,0)或(,0) |
D: (5,0)或(,0) |
- 提示1:PHA+5YWI56Gu5a6aQ+eCueeahOWdkOagh+S4uu+8iC0477yMNO+8ie+8jOWImUJDPTEx77yMQUI9NDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhJN2l5UWJNQUFBQms5MmNScEkzODIucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEk3aXlRYk1BQUFCazkyY1JwSTM4Mi5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yM55SxQ0LiiKV46L205b6X5Yiw4oigQUJDPeKIoEJBUO+8jOWGjeWIhuexu+iuqOiuuu+8muW9k+KWs0FCQ+KIveKWs0JBUO+8m+W9k+KWs0FCQ+KIveKWs1BBQu+8jOeEtuWQjuWIqeeUqOavlOS+i+e6v+auteaxgkFQ55qE6ZW/77yM5LuO6ICM56Gu5a6aUOeCueWdkOaghy48L3A+
- 答案:QQ==
PHA+6Kej77ya4oi155u057q/QkPlubPooYzkuo546L2077yMPGJyPuKItEPngrnnmoTnurXlnZDmoIfkuLo077yMPGJyPuiuvkPngrnnmoTlnZDmoIfkuLrvvIht77yMNO+8iS48YnI+55Sx6aKY5oSP5b6XPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eElyZ3dxQlNBQUFCTVM2T1lEdzQ5OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SXJnd3FCU0FBQUJNUzZPWUR3NDk4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPjxpPm08L2k+PHN1cD4yPC9zdXA+KzxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhJM2c1WGtZQUFBQlBqN1RiaTAxMTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEkzZzVYa1lBQUFCUGo3VGJpMDExNS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij48aT5tPC9pPu+8nTTvvIzop6PlvpdtPHN1Yj4xPC9zdWI+PTPvvIjkuI3lkIjpopjmhI/vvIzoiI3ljrvvvInvvIxtPHN1Yj4yPC9zdWI+PS0477yMPGJyPuKItEPngrnnmoTlnZDmoIfkuLrvvIgtOO+8jDTvvInvvIxCQz0xMe+8jEFCPTQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4STdpeVFiTUFBQUJrOTJjUnBJMzgyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhJN2l5UWJNQUFBQms5MmNScEkzODIucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPi48YnI+4oi14oigQUJDPeKIoEJBUO+8jDxicj7ikaDlpoLmnpzilrNBQkPiiL3ilrNCQVDvvIzpgqPkuYg8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4STdqQklaT0FBQUJpNGNNUTFBMTI5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhJN2pCSVpPQUFBQmk0Y01RMUExMjkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTgiPu+8nTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOS9yQkFDRkZQeHhJN0JHUGRGQUFBQmd5dGdWWE03NjEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0E5L3JCQUNGRlB4eEk3QkdQZEZBQUFCZ3l0Z1ZYTTc2MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOCI+77yMPGJyPuKItEFQPTEx77yM54K5UOeahOWdkOagh+S4uu+8iDbvvIww77yJ77yMPGJyPuKRoeWmguaenOKWs0FCQ+KIveKWs1BBQu+8jOmCo+S5iDxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhJN2pCSVpPQUFBQmk0Y01RMUExMjkucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEk3akJJWk9BQUFCaTRjTVExQTEyOS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxOCI+77ydPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E5L3JCQUNGRlB4eEk2dzdyUWpBQUFCZzB2TnpUazA1MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTkvckJBQ0ZGUHh4STZ3N3JRakFBQUJnMHZOelRrMDUxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE4Ij7vvIw8YnI+4oi0QVA9PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0E5L3JCQUNGRlB4eEk3amRrOWZBQUFCUmpPYjQ5czEyMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQTkvckJBQ0ZGUHh4STdqZGs5ZkFBQUJSak9iNDlzMTIwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIzngrlQ55qE5Z2Q5qCH5Li677yIPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEk2aXRMUklBQUFCVFVzYVk0WTExNS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4STZpdExSSUFBQUJUVXNhWTRZMTE1LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE1Ij7vvIww77yJ77yMPGJyPue7vOS4iuaJgOi/sO+8jOeCuVDnmoTlnZDmoIfkuLrvvIg277yMMO+8ieaIlu+8iDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhJNml0TFJJQUFBQlRVc2FZNFkxMTUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEk2aXRMUklBQUFCVFVzYVk0WTExNS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNSI+77yMMO+8iS48YnI+5pWF6YCJQeOAgjwvcD4=
本课配套习题挑战模式5/5
如图,二次函数y=x2-x+的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得线段AB长为6. 在抛物线上确定点Q,使△QAB与△ABC相似,写出点Q的坐标正确的是().
A: (10,3)或(2,3)或(4,) |
B: (10,3)或(2,-3)或(-4,-) |
C: (10,-3)或(-2,-3)或(4,-) |
D: (10,3)或(-2,3)或(4,-) |
- 提示1:PHA+6aaW5YWI5rGC5b6X54K5Q+eahOWdkOagh++8jOWIqeeUqOS4ieinkuWHveaVsOaxguW+l+KIoEFDQueahOW6puaVsO+8jOWIhuW9k+eCuVHlnKh46L205LiK5pa55pe25LiO5b2T54K5UeWcqHjovbTkuIvmlrnml7bmsYLop6PljbPlj6/vvIzms6jmhI/opoHmo4DpqozmmK/lkKbmiYDlvpfnu5PmnpznrKblkIjpopjmhI8uPC9wPg==
- 答案:RA==
PHA+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ4L3JCQUNFMVB4eEppaE52dXBBQUJKVkFHVVd5ZzY0OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDgvckJBQ0UxUHh4SmloTnZ1cEFBQkpWQUdVV3lnNjQ5LnBuZyIgYWx0PSLpnZLmnpzlrabpmaIiIGFsaWduPSJsZWZ0IiBoZWlnaHQ9IjE1OSIgaHNwYWNlPSIxMiIgd2lkdGg9IjIyOSI+6Kej77ya5oqKeD005Luj5YWleT08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SmVoalc4UUFBQUJuT2tMcXpVMDcxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhKZWhqVzhRQUFBQm5Pa0xxelUwNzEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPng8c3VwPjI8L3N1cD4tPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ4L3JCQUNFMVB4eEppQ0c0VFVBQUFCeVZEbi1lbzEzMS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDgvckJBQ0UxUHh4SmlDRzRUVUFBQUJ5VkRuLWVvMTMxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0Ij54KzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNi9BOS9yQkFDRkZQeHhKalJyenpPQUFBQnVSUWtxMVU5ODMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0E5L3JCQUNGRlB4eEpqUnJ6ek9BQUFCdVJRa3ExVTk4My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyNCI+5Lit77yMPGJyPuWPr+W+l+eCuUPvvIg077yMLTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yJ77yMPGJyPuWPiOKItUFNPTPvvIw8YnI+4oi05ZyoUnTilrNBTUPkuK3vvIxjb3PiiKBBQ009PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhPeUN3UzRBQUFCRHVTbWIwZzg2OS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SE95Q3dTNEFBQUJEdVNtYjBnODY5LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7iiLTiiKBBQ009NjDCsO+8jDxicj7iiLVBQz1CQ++8jDxicj7iiLTiiKBBQ0I9MTIwwrA8YnI+4pGgIOeCuVHlnKh46L205LiK5pa55pe277yM6L+HUeS9nFFO4oqleOi9tOS6jk7vvIzlpoLmnpxBQj1CUe+8jDxicj7nlLHilrNBQ0LiiL3ilrNBQlHmnIlCUT0277yM4oigQUJRPeKIoEFDQj0xMjDCsO+8jOWImeKIoFFCTj02MMKw77yMPGJyPuKItFFOPTM8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPu+8jEJOPTPvvIxPTj0xMO+8jOatpOaXtueCuVHvvIgxMO+8jDM8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPu+8ie+8jOWmguaenEFCPUFR77yM55Sx5a+556ew5oCn55+lUe+8iC0y77yMMzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yJPGJyPuKRoSDngrlR5ZyoeOi9tOS4i+aWueaXtu+8jOKWs1FBQuWwseaYr+KWs0FDQu+8jOatpOaXtueCuVHnmoTlnZDmoIfmmK/vvIg077yMLTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yJ77yMPGJyPue7j+ajgOmqjO+8jOeCue+8iDEw77yMMzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIyMyI+77yJ5LiO77yILTLvvIwzPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvInpg73lnKjmipvniannur/kuIrvvIw8YnI+57u85LiK5omA6L+w77yM57uP6aqM6K+B77ya5a2Y5Zyo6L+Z5qC355qE54K5Ue+8jOS9v+KWs1FBQuKIveKWs0FCQ++8jDxicj7ngrlR55qE5Z2Q5qCH5Li677yIMTDvvIwzPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvInmiJbvvIgtMu+8jDM8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Ny9yQkFDRTFQeHhIR0NEMmU2QUFBQmtWTnV2SlUxNTAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjMiPu+8ieaIlu+8iDTvvIwtPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ3L3JCQUNFMVB4eEhHQ0QyZTZBQUFCa1ZOdXZKVTE1MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDcvckJBQ0UxUHh4SEdDRDJlNkFBQUJrVk51dkpVMTUwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7vvIkuPGJyPuaVhemAiUTjgII8L3A+