本课配套习题挑战模式1/5
如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A: 15° |
B: 25° |
C: 30° |
D: 10° |
- 提示1:PHA+56Gu5a6a5LiJ6KeS5p2/5ZCE5Liq6KeS55qE5bqm5pWwPC9wPg==
- 提示2:PHA+55Sx5LiJ6KeS5b2i5aSW6KeS55qE5oCn6LSo5rGC5Ye64oigQkRG55qE5bqm5pWwPC9wPg==
- 提示3:PHA+5qC55o2u5LiJ6KeS5b2i5YaF6KeS5ZKM5a6a55CG5Y2z5Y+v5b6X5Ye657uT6K66PC9wPg==
- 答案:QQ==
PGRpdj7op6PvvJriiLVSdOKWs0NEReS4re+8jOKIoEM9OTDCsO+8jOKIoEU9MzDCsO+8jDxicj7iiLTiiKBCREY94oigQyviiKBFPTkwwrArMzDCsD0xMjDCsO+8jDxicj7iiLXilrNCREbkuK3vvIziiKBCPTQ1wrDvvIziiKBCREY9MTIwwrDvvIw8YnI+4oi04oigQkZEPTE4MMKwLTQ1wrAtMTIwwrA9MTXCsC48YnI+5pWF6YCJQS48L2Rpdj4=
本课配套习题挑战模式2/5
将一副直角三角板按如图放置,使含30°角的三角板的短边与含45°的三角板的一条直角边重合,则∠AGD的度数为().
A: 105° |
B: 100° |
C: 75° |
D: 80° |
- 提示1:PHA+5LiJ6KeS5b2i5aSW6KeS55qE5oCn6LSo5o6o55+l4oigQUdEPeKIoEEr4oigQUhHLOiAjOKIoEE9MzDCsDxicj48L3A+
- 提示2:PHA+5qC55o2u5a+56aG26KeS55qE5a6a5LmJ5b6X4oigQUhHPeKIoEJIRSw8YnI+PC9wPg==
- 提示3:PHA+4oigQkhF5qC55o2u5LiJ6KeS5b2i5YaF6KeS5ZKM5a6a55CG5Y+v5b6X77yM5LmL5ZCO5Luj5YWl5o+Q56S65LiA5Y2z5Y+v5rGC5b6X4oigQUdE55qE5bqm5pWwPGJyPjwvcD4=
- 答案:Qw==
PGRpdj7op6PvvJrmoLnmja7popjmhI/nn6XvvIziiKBBPTMwwrDvvIziiKBBQkY9OTDCsO+8jOKIoEU9NDXCsO+8jjxicj7miYDku6XiiKBCSEU9NDXCsO+8jDxicj48L2Rpdj48ZGl2PuKItOKIoEdIQT3iiKBCSEU9NDXCsO+8jDxicj48L2Rpdj48ZGl2PuKItOagueaNruWkluinkuWumueQhuW+lzxicj7iiLTiiKBBR0Q94oigQSviiKBBSEc9MzDCsCs0NcKwPTc1wrDvvIzljbPiiKBBR0TnmoTluqbmlbDmmK83NeW6pu+8jjxicj48L2Rpdj48ZGl2PuaVhemAiUM8YnI+PC9kaXY+
本课配套习题挑战模式3/5
将一副三角板按如图方式叠放在一起,求图中∠的度数是( )度。
A: 105° |
B: 145 |
C: 150° |
D: 165° |
- 提示1:PHA+5YWI5qC55o2u5LiJ6KeS5b2i55qE5LiA5Liq5aSW6KeS562J5LqO5LiO5a6D5LiN55u46YK755qE5Lik5Liq5YaF6KeS55qE5ZKM5rGC5Ye64oigMTwvcD4=
- 提示2:PHA+5YaN55So5ZCM5qC355qE5pa55rOV5rGC5Ye6PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0YwLzA3L3JCQUNGRk1GNVpiQ1d6TWpBQUFCTG1YYmlnODUzMy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRjAvMDcvckJBQ0ZGTUY1WmJDV3pNakFBQUJMbVhiaWc4NTMzLnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjExIj7ljbPlj688L3A+
- 答案:RA==
PGRpdj7op6PvvJrlpoLlm77vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMTEvRDcvckJBQ0ZGTVRKRHl6WlFzWkFBQVNYenpXVU1ZODUxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8xMS9ENy9yQkFDRkZNVEpEeXpaUXNaQUFBU1h6eldVTVk4NTEucG5nIiBhbHQ9IiIgc3R5bGU9IndpZHRoOiAxNTJweDsgaGVpZ2h0OiAxMjRweDsiPjxicj48L2Rpdj48ZGl2PuKIoDE94oigQiviiKBDPTMwwrArOTDCsD0xMjDCsO+8jDxicj7iiKA8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRjAvMDcvckJBQ0ZGTUY1WmJDV3pNakFBQUJMbVhiaWc4NTMzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9GMC8wNy9yQkFDRkZNRjVaYkNXek1qQUFBQkxtWGJpZzg1MzMucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTEiPj3iiKAxK+KIoEQ9MTIwwrArNDXCsD0xNjXCsC48YnI+5pWF562U5qGI5Li677yaMTY1wrAuPGJyPjwvZGl2Pg==
本课配套习题挑战模式4/5
如图所示,表示∠1,∠2,∠3,∠4的关系正确的选项为( )
A: ∠1+∠2=∠4-∠3 |
B: ∠1-∠3=∠2-∠4 |
C: ∠1+∠2=∠3+∠4 |
D: ∠1-∠2=∠4-∠3 |
- 提示1:PHA+5YWI55yL6YCJ6aG5QSzmoLnmja7kuInop5LlvaLlpJbop5LmgKfotKjlj6/lvpfiiKAxK+KIoDI94oigRkNEPC9wPg==
- 提示2:PHA+6YKj5LmI5YaN55yL5LiA5LiL4oigRkNE5piv5ZCm562J5LqO4oigNC3iiKAz5Y2z5Y+v77yM6L+Q55So55qE5L6d5pen5piv5LiJ6KeS5b2i5aSW6KeS55qE5oCn6LSoPC9wPg==
- 答案:QQ==
PGRpdj7op6PvvJriiLXiiKBBRUbmmK/ilrNCREXnmoTlpJbop5LvvIw8YnI+4oi04oigQUVGPeKIoDIr4oigM++8jDxicj7lkIznkIbvvIziiKA05piv4pazQUVG55qE5aSW6KeS77yMPGJyPuKItOKIoDQ94oigQUVGK+KIoDHvvIzljbPiiKA0PeKIoDEr4oigMiviiKAz77yM5Y2z4oigMSviiKAyPeKIoDQt4oigMy48YnI+5pWF6YCJQS48L2Rpdj4=
本课配套习题挑战模式5/5
如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )
A: 19.2° |
B: 8° |
C: 6° |
D: 3° |
- 提示1:PHA+5Yip55So6KeS5bmz5YiG57q/55qE5a6a5LmJ5ZKM5LiJ6KeS5b2i5YaF6KeS5LiO5aSW6KeS55qE5oCn6LSo6K6h566X4oigQTxzdWI+MTwvc3ViPjxicj48L3A+
- 提示2:PHA+5ZCM5qC35qC55o2u6KeS5bmz5YiG57q/55qE5a6a5LmJ5ZKM5LiJ6KeS5b2i5YaF6KeS5LiO5aSW6KeS55qE5oCn6LSo6K6h566X4oigQTxzdWI+Mjwvc3ViPjxicj48L3A+
- 提示3:PHA+5a+75om+6KeE5b6L5rGC4oigQTxzdWI+NTwvc3ViPjxicj48L3A+
- 答案:RA==
PGRpdj7op6PvvJrmoLnmja7op5LlubPliIbnur/nmoTmgKfotKjlkozlpJbop5LlrprnkIblj6/lvpc8YnI+PC9kaXY+PGRpdj7iiKBBPHN1Yj4xPC9zdWI+PTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8xMi9DOC9yQkFDRTFNRjVaLXhHakR5QUFBQkRqOEpsMVkyMzgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzEyL0M4L3JCQUNFMU1GNVoteEdqRHlBQUFCRGo4SmwxWTIzOC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvIjiiKBBK+KIoEFCQ++8iS08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMTIvQzgvckJBQ0UxTUY1Wi14R2pEeUFBQUJEajhKbDFZMjM4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8xMi9DOC9yQkFDRTFNRjVaLXhHakR5QUFBQkRqOEpsMVkyMzgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+4oigQUJDPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8xMi9DOC9yQkFDRTFNRjVaLXhHakR5QUFBQkRqOEpsMVkyMzgucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzEyL0M4L3JCQUNFMU1GNVoteEdqRHlBQUFCRGo4SmwxWTIzOC5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7iiKBBPGJyPjwvZGl2PjxkaXY+5ZCM55CG77ya4oigQTxzdWI+Mjwvc3ViPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMTIvQzgvckJBQ0UxTUY1Wi14R2pEeUFBQUJEajhKbDFZMjM4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8xMi9DOC9yQkFDRTFNRjVaLXhHakR5QUFBQkRqOEpsMVkyMzgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+QTxzdWI+MTwvc3ViPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRjAvMDcvckJBQ0ZGTUY1Wl9SdmdSQ0FBQUJOa3dfcFJvMDM2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9GMC8wNy9yQkFDRkZNRjVaX1J2Z1JDQUFBQk5rd19wUm8wMzYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+4oigQTxicj48L2Rpdj48ZGl2PuKIoEE8c3ViPjM8L3N1Yj49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzEyL0M4L3JCQUNFMU1GNVoteEdqRHlBQUFCRGo4SmwxWTIzOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMTIvQzgvckJBQ0UxTUY1Wi14R2pEeUFBQUJEajhKbDFZMjM4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPkE8c3ViPjI8L3N1Yj49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0YwLzA3L3JCQUNGRk1GNVpfUnZnUkNBQUFCTmt3X3BSbzAzNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRjAvMDcvckJBQ0ZGTUY1Wl9SdmdSQ0FBQUJOa3dfcFJvMDM2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPuKIoEE8c3ViPjE8L3N1Yj49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzEyL0M4L3JCQUNFMU1GNVpfaGhHY0ZBQUFCRW0xQlRYWTMzMC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMTIvQzgvckJBQ0UxTUY1Wl9oaEdjRkFBQUJFbTFCVFhZMzMwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPuKIoEE8YnI+5omA5Lul4oigQTxzdWI+NTwvc3ViPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMTIvQzgvckJBQ0UxTUY1Wi14R2pEeUFBQUJEajhKbDFZMjM4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8xMi9DOC9yQkFDRTFNRjVaLXhHakR5QUFBQkRqOEpsMVkyMzgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+4oigQTxzdWI+NDwvc3ViPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRjAvMDcvckJBQ0ZGTUY1Wl9SdmdSQ0FBQUJOa3dfcFJvMDM2LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9GMC8wNy9yQkFDRkZNRjVaX1J2Z1JDQUFBQk5rd19wUm8wMzYucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+4oigQTxzdWI+Mzwvc3ViPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMTIvQzgvckJBQ0UxTUY1Wl9oaEdjRkFBQUJFbTFCVFhZMzMwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8xMi9DOC9yQkFDRTFNRjVaX2hoR2NGQUFBQkVtMUJUWFkzMzAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+4oigQTxzdWI+Mjwvc3ViPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRjAvMDcvckJBQ0ZGTUY1Wi1UNnJqNkFBQUJTQ21vLWlRMTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9GMC8wNy9yQkFDRkZNRjVaLVQ2cmo2QUFBQlNDbW8taVExNjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTUiPuKIoEE8c3ViPjE8L3N1Yj49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0YwLzA3L3JCQUNGRk1GNVotQ2xpbDdBQUFCV1NYZ0ppZzEzNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRjAvMDcvckJBQ0ZGTUY1Wi1DbGlsN0FBQUJXU1hnSmlnMTM3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE3Ij7iiKBBPTk2wrDDtzMyPTPCsC48YnI+5pWF6YCJRC48YnI+PC9kaXY+