挑战习题
1
/5
单选题
难度:
1.如图,二次函数y=x
2
-
x-1与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
. 在该二次函数的图象上确定一点D,使四边形ACBD为直角梯形时,点D的坐标为( ).
A
(-
,9)
B
(
,
)
C
(-
,9)或(
,
)
D
(
,9)或(-
,
)
提示1:
IOWbm+i+ueW9okFCQ0TkuLrnm7Top5Lmoq/lvaLvvIzopoHliIbnsbvorqjorrrvvIzljbPnqbbnq5/pgqPmnaHovrnkuLrlupUuIOWPr+S7peWIhuWIq+S7pUFD44CBQkPkuLrlupXov5vooYzorqjorrou
正确答案:
Qw==
6Kej77yaIOS7pHk9MO+8jOWImTA9eDxzdXA+Mjwvc3VwPi08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvQ0QvckJBQ0ZGUHJLN3p6aHVJR0FBQUJFeVVEZ1dzNTU2LnBuZyI+eC0x77yMPGJyPjxpbWcgd2lkdGg9MTI2IGhlaWdodD0xNjEgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRS9yQkFDRkZQcks4amd6SkZmQUFBWFlVYmFoS3MxMjYucG5nIiBhbGlnbj1sZWZ0IGhzcGFjZT0xMiA+6Kej5b6X77yaeDxzdWI+MTwvc3ViPj0tPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhpUlBHbWpBQUFCR2FqMnNOUTQ3OC5wbmciPu+8jHg8c3ViPjI8L3N1Yj49Mu+8jDxicj7iiLRB77yILTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4aVJQR21qQUFBQkdhajJzTlE0NzgucG5nIj7vvIww77yJ77yMQu+8iDLvvIww77yJPGJyPuKItUPvvIgw77yMLTHvvIk8YnI+4oi0QUPiiqVCQ++8jDxicj7ikaAg5LulQUPkuLrlupXovrnvvIzliJlCROKIpUFD77yMPGJyPuWwhkHvvIxD54K55Luj5YWleT1heCti5b6X77yaPGJyPjxpbWcgd2lkdGg9OTQgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGpoNVZ5REFBQUM0Umd6NzNFNjk0LnBuZyI+77yMPGJyPuino+W+l++8mjxicj48aW1nIHdpZHRoPTU1IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqQjZqbk1BQUFDR25SaTV3RTg4OS5wbmciPu+8jDxicj7iiLRBQ+eahOino+aekOW8j+S4uu+8mnk9LTJ4LTHvvIw8YnI+5Y+v6K6+QkTnmoTop6PmnpDlvI/kuLp5PS0yeCti77yMPGJyPuaKikLvvIgy77yMMO+8ieS7o+WFpeW+l0JE6Kej5p6Q5byP5Li6eT0tMngrNO+8jDxicj7op6PmlrnnqIvnu4Q8aW1nIHdpZHRoPTEwMCBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRS9yQkFDRkZQcks4akNCNlh0QUFBRExUM0tFRzAyNDEucG5nIj48YnI+IOW+l0TvvIgtPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaTN2bVdBQUFCR3pPZVB4STU3My5wbmciPu+8jDnvvIk8YnI+4pGhIOS7pUJD5Li65bqV6L6577yM5YiZQkPiiKVBRO+8jDxicj7lsIZC77yIMu+8jDDvvInvvIxD77yIMO+8jC0x77yJ5Luj5YWleT1reCtj5Lit77yMPGJyPjxpbWcgd2lkdGg9NzkgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGppQ01QZUFBQUNocnMyTGZ3OTI4LnBuZyI+77yMPGJyPuino+W+l++8mjxpbWcgd2lkdGg9NDggaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvQ0UvckJBQ0ZGUHJLOGlUcVBQNEFBQUNQSDNVR0lrNDA2LnBuZyI+PGJyPuKItEJD55qE6Kej5p6Q5byP5Li6eT0wLjV4LTHvvIw8YnI+5Y+v6K6+QUTnmoTop6PmnpDlvI/kuLp5PTAuNXgrYu+8jOaKikHvvIg8aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGlSUEdtakFBQUJHYWoyc05RNDc4LnBuZyI+77yMMO+8ieS7o+WFpTxicj7lvpdBROino+aekOW8j+S4unk9MC41eCswLjI177yMPGJyPuino+aWueeoi+e7hDxpbWcgd2lkdGg9MTAwIGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaFJQdmVBQUFEVkFIajBPZzQ5NS5wbmciPu+8jDxicj7lvpdE77yIPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0NEL3JCQUNGRlBySzd6emh1SUdBQUFCRXlVRGdXczU1Ni5wbmciPu+8jDxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4amkzdm1XQUFBQkd6T2VQeEk1NzMucG5nIj7vvIk8YnI+57u85LiK77yM5omA5Lul5a2Y5Zyo5Lik54K577ya77yILTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4amkzdm1XQUFBQkd6T2VQeEk1NzMucG5nIj7vvIw577yJ5oiW77yIPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaTN2bVdBQUFCR3pPZVB4STU3My5wbmciPu+8jDxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRC9yQkFDRkZQcks3enpodUlHQUFBQkV5VURnV3M1NTYucG5nIj7vvIkuIDxicj7mlYXpgIlD
2
/5
单选题
难度:
2.如图,二次函数y=-x
2
+
x+1的图象与x轴交于
A
(−
,0)、B(2,0)两点,且与y轴交于点C. 在此抛物线上存在一点P,使得以A、C、B、P四点为顶点的四边形是直角梯形,点P的坐标是( ).
A
(
,-
)
B
(-
,-9)
C
(
,-
)或(-
,-9)
D
(-
,
)或(
,9)
提示1:
5Y+v6K+B5b6X4oigQUNCPTkwwrDvvIzoi6VB44CBQ+OAgULjgIFQ5Zub54K55Li66aG254K555qE5Zub6L655b2i5piv55u06KeS5qKv5b2i77yM5YiZ5pyJ5Lik56eN5oOF5Ya16ZyA6KaB6ICD6JmR77ya
提示2:
4pGg5LulQkPjgIFBUOS4uuW6le+8jEFD5Li66auY77yb5Y+v5YWI5rGC5Ye655u057q/QkPnmoTop6PmnpDlvI/vvIzov5vogIzlj6/noa7lrprnm7Tnur9BUOeahOino+aekOW8j++8jOiBlOeri+aKm+eJqee6v+eahOino+aekOW8j+WNs+WPr+axguWHuueCuVDnmoTlnZDmoIcuIOKRoeS7pUFD44CBQlDkuLrlupXvvIxCQ+S4uumrmO+8m+aWueazleWQjOKRoC4=
正确答案:
Qw==
PGltZyB3aWR0aD0xNjQgaGVpZ2h0PTI3NyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0NFL3JCQUNGRlBySy1Pd2hIOHhBQUFUaGo2cGI1ZzM4LmpwZWciIGFsaWduPWxlZnQgaHNwYWNlPTEyPuino++8muKItOaKm+eJqee6v+eahOino+aekOW8j+S4uu+8mnk9LXg8c3VwPjI8L3N1cD4rPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0NEL3JCQUNGRlBySzd6emh1SUdBQUFCRXlVRGdXczU1Ni5wbmciPngrMS4gPGJyPuKItEPvvIgw77yMMe+8ie+8jDxicj7iiLRBQzxzdXA+Mjwvc3VwPj1BTzxzdXA+Mjwvc3VwPitDTzxzdXA+Mjwvc3VwPj08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGVRbktGeEFBQUJMellZNng0MjgzLnBuZyI+77yMPGJyPkNCPHN1cD4yPC9zdXA+PUJPPHN1cD4yPC9zdXA+K0NPPHN1cD4yPC9zdXA+PTXvvIw8YnI+QUI8c3VwPjI8L3N1cD49PGltZyB3aWR0aD0xMSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9DOS85RC9yQkFDRTFQckstUHdPVkNQQUFBQlQ1X0lJTDA1NjYucG5nIj7vvIw8YnI+4oi0QUM8c3VwPjI8L3N1cD4rQ0I8c3VwPjI8L3N1cD49QUI8c3VwPjI8L3N1cD7vvIw8YnI+4oi04pazQUNC5piv55u06KeS5LiJ6KeS5b2i77yMPGJyPuKItOKIoEFDQj05MMKw77ybPGJyPuiLpeS7pUHjgIFD44CBQuOAgVDlm5vngrnkuLrpobbngrnnmoTnm7Top5Lmoq/lvaLku6VCQ+OAgUFQ5Li65bqV77ybPGJyPuKItULvvIgy77yMMO+8ie+8jEPvvIgw77yMMe+8ie+8jDxicj7iiLTnm7Tnur9CQ+eahOino+aekOW8j+S4uu+8mnk9LTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4aVJQR21qQUFBQkdhajJzTlE0NzgucG5nIj54KzHvvJs8YnI+6K6+6L+H54K5QuS4lOW5s+ihjOS6jkFD55qE55u057q/55qE6Kej5p6Q5byP5Li6eT0tPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhpUlBHbWpBQUFCR2FqMnNOUTQ3OC5wbmciPngraO+8jDxicj7lsIbngrlB77yILTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4aVJQR21qQUFBQkdhajJzTlE0NzgucG5nIj7vvIww77yJ5Luj5YWl5b6X77ya77yILTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4aVJQR21qQUFBQkdhajJzTlE0NzgucG5nIj7vvInDl++8iC08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGlSUEdtakFBQUJHYWoyc05RNDc4LnBuZyI+77yJK2g9MO+8jGg9LTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRS9yQkFDRkZQckstUEFKWmFmQUFBQkhqcVdlem8wNzMucG5nIj7vvJs8YnI+4oi0eT0tPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhpUlBHbWpBQUFCR2FqMnNOUTQ3OC5wbmciPngtPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0NFL3JCQUNGRlBySy1QQUpaYWZBQUFCSGpxV2V6bzA3My5wbmciPu+8mzxicj7ogZTnq4vmipvniannur/nmoTop6PmnpDlvI/mnInvvJo8aW1nIHdpZHRoPTEwOCBoZWlnaHQ9NjIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9DOS85RC9yQkFDRTFQckstUFIwaEVzQUFBRFVwelJSYWs5OTEucG5nIj7vvIw8YnI+6Kej5b6XPGltZyB3aWR0aD00OSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRS9yQkFDRkZQckstUGlwZkdnQUFBQ1JHdmJiM2M1NzQucG5nIj7vvIw8aW1nIHdpZHRoPTUxIGhlaWdodD02MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0M5LzlEL3JCQUNFMVBySy1TZ1g2WWdBQUFDa1dJX2JRZzQ0NS5wbmciPu+8mzxicj7iiLTngrlQ77yIPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaTN2bVdBQUFCR3pPZVB4STU3My5wbmciPu+8jC08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvQ0QvckJBQ0ZGUHJLN3p6aHVJR0FBQUJFeVVEZ1dzNTU2LnBuZyI+77yJ77ybPGJyPuiLpeS7pUHjgIFD44CBQuOAgVDlm5vngrnkuLrpobbngrnnmoTnm7Top5Lmoq/lvaLku6VBQ+OAgUJQ5Li65bqV77yMPGJyPuWQjOeQhuWPr+axguW+l1DvvIgtPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaTN2bVdBQUFCR3pPZVB4STU3My5wbmciPu+8jC0577yJ77ybPGJyPuaVheW9k1DvvIg8aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGppM3ZtV0FBQUJHek9lUHhJNTczLnBuZyI+77yMLTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRC9yQkFDRkZQcks3enpodUlHQUFBQkV5VURnV3M1NTYucG5nIj7vvInmiJbvvIgtPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaTN2bVdBQUFCR3pPZVB4STU3My5wbmciPu+8jC0577yJ5pe277yM5LulQeOAgUPjgIFC44CBUOWbm+eCueS4uumhtueCueeahOWbm+i+ueW9ouaYr+ebtOinkuair+W9oi4gPGJyPuaVhemAiUPjgII=
3
/5
单选题
难度:
3.如图,直角梯形OABC的顶点A、C分别在y轴、x轴的正半轴上,AB⊥OA,二次函数y=mx
2
-mx+2的图象经过A、B、C三点. 当AC⊥OB时,二次函数的解析式为( ).
A
y=-
x
2
+
x+2
B
y=-x
2
+x+2
C
y=
x
2
x+2
D
y=-
x
2
x+2
提示1:
IOWcqFJ04pazQU9C5Lit5ZKMUnTilrNBT0PkuK3vvIzliKnnlKjop6Pnm7Top5LkuInop5LlvaLnmoTnn6Xor4bliIbliKvmsYLlh7pPQ+eahOmVv+W6pu+8jOS7juiAjOW+l+WHuueCuUPnmoTlnZDmoIfvvIzku6PlhaXlj6/lvpflh7rkuozmrKHlh73mlbDnmoTop6PmnpDlvI8u
正确答案:
QQ==
6Kej77ya4oi15LqM5qyh5Ye95pWweT1teDxzdXA+Mjwvc3VwPi1teCsy55qE5Zu+6LGh5LiOeei9tOebuOS6pOS6jkHvvIw8YnI+4oi054K5QeeahOWdkOagh+S4uu+8iDDvvIwy77yJ77yMPGJyPuKIteS6jOasoeWHveaVsOWvueensOi9tOS4ung9PGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhpUlBHbWpBQUFCR2FqMnNOUTQ3OC5wbmciPu+8jDxicj7iiLVBQuKKpU9B77yMPGJyPuKItOeCuULnmoTlnZDmoIfkuLrvvIgx77yMMu+8ie+8jDxicj7iiLRBQj0x77yMPGJyPuKItUFD4oqlT0LvvIw8YnI+4oi04oigQUNPPTkwwrAt4oigQk9DPeKIoEFPQu+8jDxicj7lnKhSdOKWs0FPQuS4re+8jE9BPTLvvIxBQj0x77yMPGJyPuKItGNvdOKIoEFPQj08aW1nIHdpZHRoPTEzIGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0QxL3JCQUNGRlByTEV2d1dpdlVBQUFCYmtnRjR4ZzMwMC5wbmciPj0y77yMPGJyPuWcqFJ04pazQU9D5Lit77yMT0M9T0EmIzgyMjY7Y2904oigQUNPPU9BJiM4MjI2O2NvdOKIoEFPQj0yw5cyPTTvvIw8YnI+4oi054K5Q++8iDTvvIww77yJ77yMPGJyPuKItUPlnKjkuozmrKHlh73mlbB5PW14PHN1cD4yPC9zdXA+LW14KzLnmoTlm77osaHkuIrvvIw8YnI+4oi0MD0xNm0tNG0rMu+8jDxicj7iiLRtPS08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvRDEvckJBQ0ZGUHJMRXFST2Q0SUFBQUJIMXB6QzFrNTAxLnBuZyI+77yMPGJyPuKItOS6jOasoeWHveaVsOino+aekOW8j+S4unk9LTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri9EMS9yQkFDRkZQckxFcVJPZDRJQUFBQkgxcHpDMWs1MDEucG5nIj54PHN1cD4yPC9zdXA+KzxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri9EMS9yQkFDRkZQckxFcVJPZDRJQUFBQkgxcHpDMWs1MDEucG5nIj54KzIuIDxicj7mlYXpgIlB44CC
4
/5
单选题
难度:
4.如图,二次函数
的图像交x轴正半轴于点C(26,0),交y轴于点A(0,8),在直角梯形AOCD中,AD∥OC, AD=24cm,AB=8cm,OC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CO边向O以3cm/s的速度运动. P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. 当t为( )时,四边形PQCD为直角梯形。
A
6 s
B
6.5 s
C
7 s
D
7.5 s
提示1:
IOWbm+i+ueW9olBRQ0TkuLrnm7Top5Lmoq/lvaLml7ZBUD1PUS4g5omA5pyJ55qE5YWz57O75byP6YO95Y+v55So5ZCr5pyJdOeahOaWueeoi+adpeihqOekug==
正确答案:
Qg==
6Kej77yaIOKItUPvvIgyNu+8jDDvvIk8YnI+4oi0T0M9MjbvvIw8YnI+55Sx6aKY5oSP55+l77yaQVA9T1Hml7bvvIzlm5vovrnlvaJQUUNE5Li655u06KeS5qKv5b2iPGJyPuWNs3Q9MjbvvI0zdDxicj7op6PlvpfvvJp0PTYuNe+8iHPvvIk8YnI+5Y2z5b2TdD02LjXvvIhz77yJ5pe277yM5Zub6L655b2iUFFDROS4uuebtOinkuair+W9oi4gPGJyPuaVhemAiULjgII=
5
/5
单选题
难度:
5.如图,已知二次函数y=-x
2
+3x的图象经过点B(1,2),与x轴的另一个交点为A,点B关于抛物线对称轴的对称点为C,过点B作直线BM⊥x轴垂足为点M. 在直线BM上有点P(1,
),联结CP和CA,可得直线CP与直线CA相互垂直,点E为坐标轴上的一点,若使得以A、C、P、E为顶点的四边形为直角梯形,则点E的坐标为( ).
A
E
1
(-
,0)、E
2
(0,
)
B
E
1
(-
,0)、E
2
(0,-
)
C
E
1
(
,0)、E
2
(0,
)
D
E
1
(
,0)、E
2
(0,-
)
提示1:
IOKRoOW9k+eCuUXlnKh46L205LiK77yMUEXiiKVDQe+8jOKRoeW9k+eCuUXlnKh56L205LiK77yMUEPiiKVBRe+8jOS4pOenjeaDheWGteiuqOiuuuWNs+WPr+W+l+WIsOS9v+W+l+S7pUHjgIFD44CBUOOAgUXkuLrpobbngrnnmoTlm5vovrnlvaLkuLrnm7Top5Lmoq/lvaLnmoTngrlF55qE5Z2Q5qCHLg==
正确答案:
RA==
6Kej77ya5YGH6K6+5Zyo5Z2Q5qCH6L205LiK5a2Y5Zyo54K5Re+8jOS9v+W+l+S7pUHjgIFD44CBUOOAgUXkuLrpobbngrnnmoTlm5vovrnlvaLkuLrnm7Top5Lmoq/lvaLvvIw8YnI+4oi14oigUENBPTkwwrDvvIw8YnI+5YiZ4pGg5b2T54K5ReWcqHjovbTkuIrvvIxQReKIpUNB77yMPGJyPuKItOKWs0NCUOKIveKWs1BNRe+8jDxicj7iiLQ8aW1nIHdpZHRoPTE0IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0RCL3JCQUNGRlByTGRMaFdncU5BQUFCbEhtUGNmTTQ5OS5wbmciPj08aW1nIHdpZHRoPTE0IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5L0E2L3JCQUNFMVByTGRLVDdYYWtBQUFCaFlCa1VmWTY5MS5wbmciPu+8jDxicj7iiLRNRT08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvQTYvckJBQ0UxUHJMZEtpV29jTkFBQUJNTHYxbXdBMTA4LnBuZyI+77yMPGJyPuKItEU8c3ViPjE8L3N1Yj7vvIg8aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvQTYvckJBQ0UxUHJMZEx3R2JrMUFBQUJIalV5Nm8wODA2LnBuZyI+77yMMO+8ie+8mzxicj7ikaLngrlF5Zyoeei9tOS4iu+8jFBD4oilQUXvvIw8YnI+4oi04pazQ0JQ4oi94pazQU9F77yMPGJyPuKItDxpbWcgd2lkdGg9MTMgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvREIvckJBQ0ZGUHJMZExoWjhaMEFBQUJjeElBa0swMDcyLnBuZyI+PTxpbWcgd2lkdGg9MTMgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvREIvckJBQ0ZGUHJMZEt5SzFWakFBQUJXbVhRdUI0NDA1LnBuZyI+77yMPGJyPuKItE9FPTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri9EQi9yQkFDRkZQckxkTFN2T1pDQUFBQkV4SDhuX2s0ODUucG5nIj7vvIw8YnI+4oi0RTxzdWI+Mjwvc3ViPu+8iDDvvIwtPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0RCL3JCQUNGRlByTGRMU3ZPWkNBQUFCRXhIOG5fazQ4NS5wbmciPu+8iS4gPGJyPuWNs+eCuVHnmoTlnZDmoIdFPHN1Yj4xPC9zdWI+77yIPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5L0E2L3JCQUNFMVByTGRMd0diazFBQUFCSGpVeTZvMDgwNi5wbmciPu+8jDDvvInjgIFFPHN1Yj4yPC9zdWI+77yIMO+8jC08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvREIvckJBQ0ZGUHJMZExTdk9aQ0FBQUJFeEg4bl9rNDg1LnBuZyI+77yJ5pe277yM5LulQeOAgUPjgIFQ44CBReS4uumhtueCueeahOWbm+i+ueW9ouS4uuebtOinkuair+W9oi4gPGJyPuaVhemAiUTjgII=