挑战习题
1/5单选题
难度:

1.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”. 如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn)(n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n为正整数). 若x1=d(0<d<1),当d为(  )时,这组抛物线中存在美丽抛物线.
A
B
C
D
提示1:
IOeUseaKm+eJqee6v+eahOWvueensOaAp+WPr+efpe+8jOaJgOaehOaIkOeahOebtOinkuS4ieinkuW9ouW/heaYr+S7peaKm+eJqee6v+mhtueCueS4uuebtOinkumhtueCueeahOetieiFsOS4ieinkuW9ou+8jOaJgOS7peatpOetieiFsOS4ieinkuW9ouaWnOi+ueS4iueahOmrmOetieS6juaWnOi+ueeahOS4gOWNii4g5Y+IMO+8nGTvvJwx77yM5omA5Lul562J6IWw55u06KeS5LiJ6KeS5b2i5pac6L6555qE6ZW/5bCP5LqOMu+8jOaJgOS7peetieiFsOebtOinkuS4ieinkuW9ouaWnOi+ueeahOmrmOS4gOWumuWwj+S6jjHvvIzljbPmipvniannur/nmoTlrprngrnnurXlnZDmoIflv4XlrprlsI/kuo4xLg==
正确答案:Qg==
6Kej77ya55u057q/IDxpbWcgd2lkdGg9NSBoZWlnaHQ9MjEgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9CMy80RC9yQkFDRTFQa2I3YnpRYW53QUFBQkRGbUVrdDA0NDEucG5nIj7vvJp5PTxpbWcgd2lkdGg9NyBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3V3lOeGxSQUFBQk1VV3BhdzQ4NTUucG5nIj54K2Lnu4/ov4fngrlN77yIMO+8jDxpbWcgd2lkdGg9NyBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3V2kwSzgtQUFBQkx6RkdETGc5ODUucG5nIj7vvInvvIzliJliPTxpbWcgd2lkdGg9NiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3YlJwT0R0QUFBQktXbFlEV3MyNzkucG5nIj48YnI+4oi055u057q/IDxpbWcgd2lkdGg9NSBoZWlnaHQ9MjEgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9CMy80RC9yQkFDRTFQa2I3YnpRYW53QUFBQkRGbUVrdDA0NDEucG5nIj7vvJp5PTxpbWcgd2lkdGg9NDMgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzUvQUQvckJBQ0ZGUGtiN2FoN0tkX0FBQUJ5MEx0ckhjMzI1LnBuZyI+PHRhYmxlIGNsYXNzPU1zb05vcm1hbFRhYmxlIGJvcmRlcj0wIGNlbGxzcGFjaW5nPTAgY2VsbHBhZGRpbmc9MCBzdHlsZT0nYm9yZGVyLWNvbGxhcHNlOmNvbGxhcHNlJz4gPHRyPiAgPHRkIHN0eWxlPSdib3JkZXI6bm9uZTtib3JkZXItYm90dG9tOnNvbGlkIGJsYWNrIDEuMHB0O3BhZGRpbmc6LS43NXB0IC0uNzVwdCAtLjc1cHQgLS43NXB0Jz48L3RkPiA8L3RyPjwvdGFibGU+55Sx5oqb54mp57q/55qE5a+556ew5oCn55+l77ya5oqb54mp57q/55qE6aG254K55LiOeOi9tOeahOS4pOS4quS6pOeCueaehOaIkOeahOebtOinkuS4ieinkuW9ouW/heS4uuetieiFsOebtOinkuS4ieinkuW9ou+8mzxicj7iiLTor6XnrYnohbDkuInop5LlvaLnmoTpq5jnrYnkuo7mlpzovrnnmoTkuIDljYouIDxicj7iiLUw77ycZO+8nDHvvIw8YnI+4oi06K+l562J6IWw55u06KeS5LiJ6KeS5b2i55qE5pac6L656ZW/5bCP5LqOMu+8jOaWnOi+ueS4iueahOmrmOWwj+S6jjHvvIjljbPmipvniannur/nmoTpobbngrnnurXlnZDmoIflsI/kuo4x77yJ77ybPGJyPuKIteW9k3g9MeaXtu+8jHk8c3ViPjE8L3N1Yj49PGltZyB3aWR0aD02IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzc1L0FEL3JCQUNGRlBrYjdiQVZVQ19BQUFCSDBRUENTUTUyMS5wbmciPsOXMSs8aW1nIHdpZHRoPTYgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNzUvQUQvckJBQ0ZGUGtiN2JScE9EdEFBQUJLV2xZRFdzMjc5LnBuZyI+PTxpbWcgd2lkdGg9MTIgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzUvQUQvckJBQ0ZGUGtiN2FCSXdtTUFBQUJRVFZPTUFNMjA0LnBuZyI+77ycMSA8YnI+5b2TeD0y5pe277yMeTxzdWI+Mjwvc3ViPj08aW1nIHdpZHRoPTYgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzUvQUQvckJBQ0ZGUGtiN2JBVlVDX0FBQUJIMFFQQ1NRNTIxLnBuZyI+w5cyKzxpbWcgd2lkdGg9NiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3YlJwT0R0QUFBQktXbFlEV3MyNzkucG5nIj49PGltZyB3aWR0aD0xMiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9CMy80RC9yQkFDRTFQa2I3YmpkY2VHQUFBQkxDMG9EaDQ5MzgucG5nIj7vvJwxPGJyPuW9k3g9M+aXtu+8jHk8c3ViPjM8L3N1Yj49PGltZyB3aWR0aD02IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzc1L0FEL3JCQUNGRlBrYjdiQVZVQ19BQUFCSDBRUENTUTUyMS5wbmciPsOXMys8aW1nIHdpZHRoPTYgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNzUvQUQvckJBQ0ZGUGtiN2JScE9EdEFBQUJLV2xZRFdzMjc5LnBuZyI+PTxpbWcgd2lkdGg9NiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3YXpwZlZjQUFBQk5tZFNCM3M2NDYucG5nIj7vvJ4x77yMPGJyPuKItOe+juS4veaKm+eJqee6v+eahOmhtueCueWPquaciUI8c3ViPjE8L3N1Yj7jgIFCPHN1Yj4yPC9zdWI+LiA8YnI+4pGg6IulQjxzdWI+MTwvc3ViPuS4uumhtueCue+8jOeUsUI8c3ViPjE8L3N1Yj7vvIgx77yMPGltZyB3aWR0aD0xMiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3YUJJd21NQUFBQlFUVk9NQU0yMDQucG5nIj7vvInvvIzliJlkPTEtPGltZyB3aWR0aD0xMiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3YUJJd21NQUFBQlFUVk9NQU0yMDQucG5nIj49PGltZyB3aWR0aD0xMiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC83NS9BRC9yQkFDRkZQa2I3YWdvaUVkQUFBQlFSbUdHanM1NDMucG5nIj48YnI+4pGh6IulQjxzdWI+Mjwvc3ViPuS4uumhtueCue+8jOeUsUI8c3ViPjI8L3N1Yj7vvIgy77yMPGltZyB3aWR0aD0xMiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9CMy80RC9yQkFDRTFQa2I3YmpkY2VHQUFBQkxDMG9EaDQ5MzgucG5nIj7vvInvvIzliJlkPTEtPGltZyB3aWR0aD04NCBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9CMy80RC9yQkFDRTFQa2I3YUJncGw5QUFBQ1htZUdpMlE4OTAucG5nIj49PGltZyB3aWR0aD0xMiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9CMy80RC9yQkFDRTFQa2I3YmpkY2VHQUFBQkxDMG9EaDQ5MzgucG5nIj48YnI+57u85LiK5omA6L+w77yMZOeahOWAvOS4ujxpbWcgd2lkdGg9MTIgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNzUvQUQvckJBQ0ZGUGtiN2Fnb2lFZEFBQUJRUm1HR2pzNTQzLnBuZyI+5oiWPGltZyB3aWR0aD0xMiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9CMy80RC9yQkFDRTFQa2I3YmpkY2VHQUFBQkxDMG9EaDQ5MzgucG5nIj7ml7bvvIzlrZjlnKjnvo7kuL3mipvniannur88YnI+5pWF6YCJQg==