挑战习题
1/5单选题
难度:

1.

如图,△AOB的顶点A、B在二次函数y=−x2+x+的图象上,又点A、B分别在y轴和x轴上,tan∠ABO=1. 过点A作AC∥BO交上述函数图象于点C,点P在上述函数图象上,当△POC与△ABO相似时,点P的坐标为(    ).



A

(0,)或(3,0)

B

(0,)或(3,0)

C

(0,)或(4,0)

D

(0,)或(4,0)

提示1:
PHA+6aaW5YWI55SxQUPiiKVCT+S6pOS4iui/sOWHveaVsOWbvuixoeS6jueCuUPlj6/ku6XmsYLlh7pD55qE5Z2Q5qCH77yM5o6l552A5b6X5YiwQUPjgIFBT+OAgU9D55qE6ZW/5bqm77yM55Sx5q2k5Lmf5Y+v5Lul5rGC5Ye6YueahOWAvO+8jOagueaNruaKm+eJqee6v+eahOWvueensOaAp+WPr+S7peaxguWHuuaKm+eJqee6v+S4jnjovbTnmoTlj6bkuIDkuqTngrnkuLpE55qE5Z2Q5qCH77yM5LuO6ICM5b6X5YiwQ0TnmoTplb/luqbvvIzmjqXnnYDliKnnlKjli77ogqHlrprnkIbnmoTpgIblrprnkIbor4HmmI7iiKBPQ0Q9OTDCsO+8jOaYk+W+l1J04pazT0NB4oi9UnTilrNBQk/vvIxSdOKWs09EQ+KIvVJ04pazQUJP77yM5rGC5Ye6UOeahOWdkOaghy48L3A+
正确答案:Qg==
PHA+6Kej77ya4oi1QUPiiKVCT+S6pOS4iui/sOWHveaVsOWbvuixoeS6jueCuUPvvIw8YnI+4oi06K6+PGk+QzwvaT4oPGk+eDwvaT7vvIw8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFYeHh2Y3pBQUFjS2lvcW5yTTA0Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVh4eHZjekFBQWNLaW9xbnJNMDQ2LnBuZyIgYWx0PSLpnZLmnpzlrabpmaIiIGFsaWduPSJsZWZ0IiBoZWlnaHQ9IjExOCIgaHNwYWNlPSIxMiIgd2lkdGg9IjE4MiI+KTxicj7iiLTiiJI8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVNqOHFMVEFBQUJKeXB1SGU4NTkxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRU2o4cUxUQUFBQkp5cHVIZTg1OTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+PGk+eDwvaT48c3VwPjI8L3N1cD4rPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFTQWdrM19BQUFCRG1JZ1phYzg3Ny5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVNBZ2szX0FBQUJEbUlnWmFjODc3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPjxpPng8L2k+KzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMPGJyPuino+W+lzxpPng8L2k+PHN1Yj4xPC9zdWI+77ydMO+8jDxpPng8L2k+PHN1Yj4yPC9zdWI+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7iiLU8aT5DPC9pPig8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRV0RSTHNOQUFBQk02VXhoa0E5NjMucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPik8YnI+4oi0PGk+QUM8L2k+77ydPGk+QU88L2k+77ydPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPu+8jDxicj7moLnmja7li77ogqHlrprnkIblvpfvvJo8aT5PQzwvaT7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUMvckJBQ0ZGUHh4UVhETE5wS0FBQUJzWHpBdmhjMTA0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BQy9yQkFDRkZQeHhRWERMTnBLQUFBQnNYekF2aGMxMDQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPu+8jDxicj7orr7mipvniannur88aT55PC9pPu+8neKIkjxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRU2o4cUxUQUFBQkp5cHVIZTg1OTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFTajhxTFRBQUFCSnlwdUhlODU5MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI4Ij48aT54PC9pPjxzdXA+Mjwvc3VwPis8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVNBZ2szX0FBQUJEbUlnWmFjODc3LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRU0FnazNfQUFBQkRtSWdaYWM4NzcucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iOCI+PGk+eDwvaT4rPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPuS4jnjovbTnmoTlj6bkuIDkuqTngrnkuLpE77yMPGJyPuWPr+W+l++8jETvvIgz77yMMO+8iTxicj7iiLTmoLnmja7kuKTngrnpl7TnmoTot53nprvlhazlvI/lvpfvvJo8aT5DRDwvaT7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVhRQllfTkFBQUR2UFN2SHF3MzE1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80OS9yQkFDRTFQeHhRWFFCWV9OQUFBRHZQU3ZIcXczMTUucG5nIiBoZWlnaHQ9IjYyIiB3aWR0aD0iMTcwIj7vvJ08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUMvckJBQ0ZGUHh4UVhETE5wS0FBQUJzWHpBdmhjMTA0LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9BQy9yQkFDRkZQeHhRWERMTnBLQUFBQnNYekF2aGMxMDQucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPjxicj7vvIzlj4hPRD0z77yMT0M9PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0FDL3JCQUNGRlB4eFFYRExOcEtBQUFCc1h6QXZoYzEwNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQUMvckJBQ0ZGUHh4UVhETE5wS0FBQUJzWHpBdmhjMTA0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI0Ij48YnI+77yMPGJyPuKItE9DPHN1cD4yPC9zdXA+K0NEPHN1cD4yPC9zdXA+PU9EPHN1cD4yPC9zdXA+77yM4oi04oigT0NEPTkwwrA8YnI+5piT5b6X77yMUnTilrNPQ0HiiL1SdOKWs0FCT++8jFJ04pazT0RD4oi9UnTilrNBQk88YnI+5q2k5pe2RO+8jFDph43lkIjvvIxB5LiOUOmHjeWQiO+8jDxicj7iiLQ8aT5QPC9pPigw77yMPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzQ5L3JCQUNFMVB4eFFXRFJMc05BQUFCTTZVeGhrQTk2My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNDkvckJBQ0UxUHh4UVdEUkxzTkFBQUJNNlV4aGtBOTYzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPinmiJZQ77yIM++8jDDvvIkuPGJyPuaVhemAiULjgII8L3A+