挑战习题
1/5单选题
难度:

1.

在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点. 设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,这个二次函数的解析式为(    ).



A

y=x2-x+

B

y=-x2x+

C

y=x2-x-或y=-x2x+

D

y=x2-x+或y=-x2x+

提示1:
PHA+6aaW5YWI5rGC5Ye6Q++8jETngrnlnZDmoIfvvIzov5vogIzlvpflh7pDT+eahOmVv++8jOWIqeeUqOW9k+KWs0FPQ+S4juKWs0RFQuebuOS8vOaXtu+8jOagueaNruKRoOWBh+iuvuKIoE9DQT3iiKBFQkTvvIzikaHlgYforr7iiKBPQ0E94oigRURC77yM5YiG5Yir5rGC5Ye65Y2z5Y+vLjwvcD4=
正确答案:RA==
PHA+6Kej77ya6K6+5LqM5qyh5Ye95pWw55qE6KGo6L6+5byP5Li677yaeT1h77yIeC0x77yJ77yIeC0z77yJ77yIYeKJoDDvvInvvIw8YnI+5b2TeD0w5pe277yMeT0zYe+8jOW9k3g9MuaXtu+8jHk9LWHvvIw8YnI+4oi054K5Q+WdkOagh+S4uu+8mu+8iDDvvIwzYe+8ie+8jOmhtueCuUTlnZDmoIfkuLrvvJrvvIgy77yMLWHvvInvvIw8YnI+4oi0T0M9fDNhfO+8jDxicj7lj4jiiLVB77yIMe+8jDDvvInvvIxF77yIMu+8jDDvvInvvIw8YnI+4oi0QU89Me+8jEVCPTHvvIxERT18LWF8PXxhfO+8jDxicj7lvZPilrNBT0PkuI7ilrNERULnm7jkvLzml7bvvIw8YnI+4pGgIOiuvuKIoE9DQT3iiKBFQkTvvIw8YnI+5Y+v5b6XPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFc2QzF1S3NBQUFCaDJQQkVqZzA2MS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4VzZDMXVLc0FBQUJoMlBCRWpnMDYxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij49PGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFc3d09ZeHNBQUFCYi1xcXNNNDMxNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vzd3T1l4c0FBQUJiLXFxc000MzE2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE4Ij7vvIw8YnI+5Y2zPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFdfQml1MkhBQUFCVFkzVGdMQTkwNC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4V19CaXUySEFBQUJUWTNUZ0xBOTA0LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE3Ij49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFctaWVMV2pBQUFCZnVLUmxlbzQ3MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vy1pZUxXakFBQUJmdUtSbGVvNDcwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjI1Ij7vvIw8YnI+4oi0YT08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4VzZoQm9WbEFBQUJpZHlvQVR3ODUxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPuaIlmE9LTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFc2aEJvVmxBQUFCaWR5b0FUdzg1MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNiI+77yMPGJyPuKRoSDorr7iiKBPQ0E94oigRURC77yM5Y+v5b6XPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFctaUZSQ3NBQUFCanhtbWVpczAwOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4Vy1pRlJDc0FBQUJqeG1tZWlzMDA4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE5Ij49PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFdfUkFLQ3ZBQUFCYlZLZTV5VTE5OC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4V19SQUtDdkFBQUJiVktlNXlVMTk4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjE4Ij7vvIw8YnI+4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFctaEZrNHRBQUFBMVRuakZMWTAwNy5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vy1oRms0dEFBQUExVG5qRkxZMDA3LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjgiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4V19RWkw0NkFBQUJoeGR5X0hZNDE4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9BNi9CMC9yQkFDRkZQeHhXX1FaTDQ2QUFBQmh4ZHlfSFk0MTgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjUiPu+8jOatpOaWueeoi+aXoOino++8mzxicj7nu7zkuIrmiYDov7DvvIzmiYDlvpfkuozmrKHlh73mlbDnmoTooajovr7lvI/kuLrvvJp5PTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0Q5LzRDL3JCQUNFMVB4eFc2aEJvVmxBQUFCaWR5b0FUdzg1MS5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSIxNiI+eDxzdXA+Mjwvc3VwPi08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4VzZTOTg4OEFBQUJ2ZFZydWJRODQ1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNlM5ODg4QUFBQnZkVnJ1YlE4NDUucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMjQiPngrPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFc2U05iMldBQUFCa1FVU2VoRTA2Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4VzZTTmIyV0FBQUJrUVVTZWhFMDY2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj7miJZ5PS08aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4VzZoQm9WbEFBQUJpZHlvQVR3ODUxLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXNmhCb1ZsQUFBQmlkeW9BVHc4NTEucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iMTYiPng8c3VwPjI8L3N1cD48aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvRDkvNEMvckJBQ0UxUHh4Vzd3V3VtY0FBQUIxaUFuQTdrNTAwLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9EOS80Qy9yQkFDRTFQeHhXN3dXdW1jQUFBQjFpQW5BN2s1MDAucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNDEiPngrPGltZyBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0E2L0IwL3JCQUNGRlB4eFc2U05iMldBQUFCa1FVU2VoRTA2Ni5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQTYvQjAvckJBQ0ZGUHh4VzZTTmIyV0FBQUJrUVVTZWhFMDY2LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjIzIj4uPGJyPuaVhemAiUTjgII8L3A+