挑战习题
1/5单选题
难度:

1.

直线l过点A(4,0)和B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若,则二次函数关系式为(  )


A

B

C

D

提示1:
PHA+6aaW5YWI5rGC5Ye655u057q/QULop6PmnpDlvI/vvIw8L3A+
提示2:
PHA+5Yip55So6Z2i56ev56Gu5a6a54K5UOWdkOagh++8jOS7juiAjOaxguWHuuino+aekOW8jzwvcD4=
正确答案:Qg==
PGRpdj48c3Bhbj48c3BhbiBzdHlsZT0iaGVpZ2h0OiAwcHg7IHBhZGRpbmc6IDBweDsgbWFyZ2luOiAwcHg7IGRpc3BsYXk6IGJsb2NrOyB6LWluZGV4OiA5OTk5OyBjb2xvcjogcmdiKDI1NSwgMjU1LCAyNTUpOyBmb250LXNpemU6IDBweDsgbGluZS1oZWlnaHQ6IDBweDsgcG9zaXRpb246IGFic29sdXRlOyBib3JkZXItdG9wOiAxcHggZGFzaGVkIHJnYigyNTUsIDAsIDApOyAtbW96LXVzZXItc2VsZWN0OiBub25lOyBsZWZ0OiAwcHg7IHJpZ2h0OiAwcHg7IHRvcDogLTFweDsiIGNvbnRlbnRlZGl0YWJsZT0iZmFsc2UiPjxzcGFuIHN0eWxlPSJ3aWR0aDowcHg7aGVpZ2h0OjBweDtwYWRkaW5nOjBweDttYXJnaW46MHB4O2Rpc3BsYXk6YmxvY2s7ei1pbmRleDo5OTk5O2NvbG9yOiNmZmY7cG9zaXRpb246YWJzb2x1dGU7Zm9udC1zaXplOiAwcHg7bGluZS1oZWlnaHQ6MHB4O2JvcmRlci1jb2xvcjp0cmFuc3BhcmVudDtkaXNwbGF5OmJsb2NrO2JvcmRlci1zdHlsZTpzb2xpZDtyaWdodDowcHg7Ym9yZGVyLXJpZ2h0LWNvbG9yOiNmZjAwMDA7Ym9yZGVyLXdpZHRoOjAgOHB4IDhweCAwO3RvcDowcHgiPiZuYnNwOzwvc3Bhbj48c3BhbiBzdHlsZT0id2lkdGg6MHB4O2hlaWdodDowcHg7cGFkZGluZzowcHg7bWFyZ2luOjBweDtkaXNwbGF5OmJsb2NrO3otaW5kZXg6OTk5OTtjb2xvcjojZmZmO3Bvc2l0aW9uOmFic29sdXRlO2ZvbnQtc2l6ZTogMHB4O2xpbmUtaGVpZ2h0OjBweDtib3JkZXItY29sb3I6dHJhbnNwYXJlbnQ7ZGlzcGxheTpibG9jaztib3JkZXItc3R5bGU6c29saWQ7bGVmdDowcHg7Ym9yZGVyLWxlZnQtY29sb3I6I2ZmMDAwMDtib3JkZXItd2lkdGg6MCAwIDhweCA4cHg7dG9wOjBweCI+Jm5ic3A7PC9zcGFuPjxzcGFuIHN0eWxlPSJ3aWR0aDowcHg7aGVpZ2h0OjBweDtwYWRkaW5nOjBweDttYXJnaW46MHB4O2Rpc3BsYXk6YmxvY2s7ei1pbmRleDo5OTk5O2NvbG9yOiNmZmY7cG9zaXRpb246YWJzb2x1dGU7Zm9udC1zaXplOiAwcHg7bGluZS1oZWlnaHQ6MHB4O2hlaWdodDoxN3B4O3dpZHRoOjE3cHg7cmlnaHQ6MTdweDtiYWNrZ3JvdW5kOnVybChodHRwczovL21hbmFnZS5xaW5nZ3VvLmNvbS9qX3NvdXJjZS9KTUVkaXRvci0wLjkuNC9qbWVkaXRvci9ja2VkaXRvci9wbHVnaW5zL21hZ2ljbGluZS9pbWFnZXMvaWNvbi5wbmcpIGNlbnRlciBuby1yZXBlYXQgI2ZmMDAwMDtjdXJzb3I6cG9pbnRlcjt0b3A6LTFweDstbW96LWJvcmRlci1yYWRpdXM6MHB4IDBweCAycHggMnB4O2JvcmRlci1yYWRpdXM6MHB4IDBweCAycHggMnB4IiB0aXRsZT0iSW5zZXJ0IHBhcmFncmFwaCBoZXJlIiBjb250ZW50ZWRpdGFibGU9ImZhbHNlIj7ihrU8L3NwYW4+PC9zcGFuPjwvc3Bhbj48ZGl2Puino++8muiuvuebtOe6v+S4uu+8mnk9a3grYu+8jOKIteebtOe6v2zov4fngrlB77yINO+8jDDvvInlkoxC77yIMO+8jDTvvInkuKTngrnvvIziiLQ0aytiPTDvvIxiPTQ8L2Rpdj48ZGl2PuKItHk9LXgrNO+8jOKItTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC8wNS9DMC9yQkFDRkZNUDhPZmd3TnFqQUFBQ2pWVHNaUzAzOTcucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzA1L0MwL3JCQUNGRk1QOE9mZ3dOcWpBQUFDalZUc1pTMDM5Ny5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI5NyI+77yM4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzI4L0I4L3JCQUNFMU1QOE9mU1ptVVhBQUFDd2kwem8ySTAyOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjgvQjgvckJBQ0UxTVA4T2ZTWm1VWEFBQUN3aTB6bzJJMDI4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjExMiI+77yM4oi0PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA1L0MwL3JCQUNGRk1QOE9lQ0FEQmpBQUFCMTBfS2lzWTAzOC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDUvQzAvckJBQ0ZGTVA4T2VDQURCakFBQUIxMF9LaXNZMDM4LnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjQ3Ij7vvIziiLQ8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjgvQjgvckJBQ0UxTVA4T2VBdGQ0cEFBQUNKM1BPOFB3NDc5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yOC9COC9yQkFDRTFNUDhPZUF0ZDRwQUFBQ0ozUE84UHc0NzkucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iODgiPu+8jOino+W+lzxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yOC9COC9yQkFDRTFNUDhPZUFmNEduQUFBQm5Ed09HdTQ1NjMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzI4L0I4L3JCQUNFMU1QOE9lQWY0R25BQUFCbkR3T0d1NDU2My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI0MSI+77yM5oqK54K5UOeahOWdkOaghzwvZGl2PjxkaXY+PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA1L0MwL3JCQUNGRk1QOE9lZ2RwOFJBQUFCX0E2M05BZzczMS5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDUvQzAvckJBQ0ZGTVA4T2VnZHA4UkFBQUJfQTYzTkFnNzMxLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjQxIj7ku6PlhaV5PWF4PHN1cD4yPC9zdXA+77yM6Kej5b6XPGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzA1L0MwL3JCQUNGRk1QOE9leHVxMXZBQUFCM1FEWlFzNDk3MC5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMDUvQzAvckJBQ0ZGTVA4T2V4dXExdkFBQUIzUURaUXM0OTcwLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjQ5Ij7vvIzljbPop6PmnpDlvI/kuLo8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvMjgvQjgvckJBQ0UxTVA4T2VBZ1BVYUFBQUNYZ0VreTdjNjE4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC8yOC9COC9yQkFDRTFNUDhPZUFnUFVhQUFBQ1hnRWt5N2M2MTgucG5nIiBoZWlnaHQ9IjQyIiB3aWR0aD0iNzIiPjxicj48L2Rpdj48L2Rpdj4=