挑战习题
1/5单选题
难度:

1.如图,已知二次函数y=-x2+2mx的图象经过点B(1,2),与x轴的另一个交点为A,点B关于抛物线对称轴的对称点为C,过点B作直线BM⊥x轴垂足为点M. 在直线BM上有点P(1,),连结CP和CA,在坐标轴上以A、C、P、E为顶点的四边形为直角梯形,则满足条件的点E的坐标为(    )
A E1,0)、E2(0,-
B E1,0)、E2(0,-
C E1(2,0)、E2(0,-
D E1,0)、E2(0,-
提示1:
IOWIhuKRoOW9k+eCuUXlnKh46L205LiK77yMUEXiiKVDQe+8jOKRoeW9k+eCuUXlnKh56L205LiK77yMUEPiiKVBRe+8jOS4pOenjeaDheWGteiuqOiuuuWNs+WPr+W+l+WIsOS9v+W+l+S7pUHjgIFD44CBUOOAgUXkuLrpobbngrnnmoTlm5vovrnlvaLkuLrnm7Top5Lmoq/lvaLnmoTngrlF55qE5Z2Q5qCHLg==
正确答案:QQ==
6Kej77ya4oi154K5Qu+8iDHvvIwy77yJ5Zyo5LqM5qyh5Ye95pWweT0teDxzdXA+Mjwvc3VwPisybXjnmoTlm77osaHkuIrvvIw8YnI+4oi0LTE8c3VwPjI8L3N1cD4rMm09Mjxicj7op6PlvpdtPTxpbWcgd2lkdGg9NyBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Qi80MC9yQkFDRkZQcDRwRFQwS1U5QUFBQk56Z2gzTGc0MDkucG5nIj48YnI+4oi0eT0teDxzdXA+Mjwvc3VwPiszeO+8m+KIteS6jOasoeWHveaVsOeahOino+aekOW8j+S4unk9LXg8c3VwPjI8L3N1cD4rM3jvvIw8YnI+4oi054K5Qe+8iDPvvIww77yJ77yMQ++8iDLvvIwy77yJ77yMPGJyPuKItVDvvIgx77yMPGltZyB3aWR0aD03IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhCLzQwL3JCQUNGRlBwNHBEVDBLVTlBQUFCTnpnaDNMZzQwOS5wbmciPu+8ie+8jDxicj7iiLRQQTxzdXA+Mjwvc3VwPj08aW1nIHdpZHRoPTEzIGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhCLzQwL3JCQUNGRlBwNHBEeWNFZS1BQUFCWXl2cTBKTTU2My5wbmciPu+8jFBDPHN1cD4yPC9zdXA+PTxpbWcgd2lkdGg9NyBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9DNi82Qi9yQkFDRTFQcDRwQ2lEcWV3QUFBQk1XX005S0U3OTQucG5nIj7vvIxBQzxzdXA+Mjwvc3VwPj0177yMPGJyPuKItFBBPHN1cD4yPC9zdXA+PVBDPHN1cD4yPC9zdXA+K0FDPHN1cD4yPC9zdXA+77yMPGJyPuKItOKIoFBDQT05MMKw77yM5Y2zQ1DiiqVDQe+8mzxicj7iiLXiiKBQQ0E9OTDCsO+8jDxicj7liJnikaDlvZPngrlF5ZyoeOi9tOS4iu+8jFBF4oilQ0HvvIw8YnI+4oi04pazQ0JQ4oi94pazUE1F77yMPGJyPuKItDxpbWcgd2lkdGg9MTggaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQzYvNkIvckJBQ0UxUHA0cENDUnBkUEFBQUJyM3JiOTdrODc4LnBuZyI+PTxpbWcgd2lkdGg9MTggaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzYvNkIvckJBQ0UxUHA0cENTdmxnTEFBQUJ0cE1pMnNvODY0LnBuZyI+77yMPGJyPuKItE1FPTxpbWcgd2lkdGg9NyBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9DNi82Qi9yQkFDRTFQcDRwRHc0eUdmQUFBQlFGaUFqNDgyMzIucG5nIj7vvIw8YnI+4oi0RTxzdWI+MTwvc3ViPu+8iDxpbWcgd2lkdGg9NyBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Qi80MC9yQkFDRkZQcDRwRGhJVmxqQUFBQkx5T3lqS3MxNTMucG5nIj7vvIww77yJ77ybPGJyPuKRoeW9k+eCuUXlnKh56L205LiK77yMUEPiiKVBRe+8jDxicj7iiLTilrNDQlDiiL3ilrNBT0XvvIw8YnI+4oi0PGltZyB3aWR0aD0xNiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Qi80MC9yQkFDRkZQcDRwQ1ItUUMtQUFBQmlpNjY4NWMzMjcucG5nIj49PGltZyB3aWR0aD0xNiBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Qi80MC9yQkFDRkZQcDRwSHd0RzdzQUFBQmZDMUVTanc3MjMucG5nIj7vvIw8YnI+4oi0T0U9PGltZyB3aWR0aD03IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzhCLzQwL3JCQUNGRlBwNHBEVDBLVTlBQUFCTnpnaDNMZzQwOS5wbmciPu+8jDxicj7iiLRFPHN1Yj4yPC9zdWI+77yIMO+8jC08aW1nIHdpZHRoPTcgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEIvNDAvckJBQ0ZGUHA0cERUMEtVOUFBQUJOemdoM0xnNDA5LnBuZyI+77yJLiA8YnI+5Y2z54K5UeeahOWdkOagh0U8c3ViPjE8L3N1Yj7vvIg8aW1nIHdpZHRoPTcgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvOEIvNDAvckJBQ0ZGUHA0cERoSVZsakFBQUJMeU95aktzMTUzLnBuZyI+77yMMO+8ieOAgUU8c3ViPjI8L3N1Yj7vvIgw77yMLTxpbWcgd2lkdGg9NyBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Qi80MC9yQkFDRkZQcDRwRFQwS1U5QUFBQk56Z2gzTGc0MDkucG5nIj7vvInml7bvvIzku6VB44CBQ+OAgVDjgIFF5Li66aG254K555qE5Zub6L655b2i5Li655u06KeS5qKv5b2iLiA8YnI+5pWF6YCJQeOAgg==