挑战习题
1/5单选题
难度:

1.如图,二次函数y=x2-x-1与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为. 在该二次函数的图象上确定一点D,使四边形ACBD为直角梯形时,点D的坐标为(    ).
A (-,9)
B
C (-,9)或(
D,9)或(-
提示1:
IOWbm+i+ueW9okFCQ0TkuLrnm7Top5Lmoq/lvaLvvIzopoHliIbnsbvorqjorrrvvIzljbPnqbbnq5/pgqPmnaHovrnkuLrlupUuIOWPr+S7peWIhuWIq+S7pUFD44CBQkPkuLrlupXov5vooYzorqjorrou
正确答案:Qw==
6Kej77yaIOS7pHk9MO+8jOWImTA9eDxzdXA+Mjwvc3VwPi08aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvQ0QvckJBQ0ZGUHJLN3p6aHVJR0FBQUJFeVVEZ1dzNTU2LnBuZyI+eC0x77yMPGJyPjxpbWcgd2lkdGg9MTI2IGhlaWdodD0xNjEgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRS9yQkFDRkZQcks4amd6SkZmQUFBWFlVYmFoS3MxMjYucG5nIiBhbGlnbj1sZWZ0IGhzcGFjZT0xMiA+6Kej5b6X77yaeDxzdWI+MTwvc3ViPj0tPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhpUlBHbWpBQUFCR2FqMnNOUTQ3OC5wbmciPu+8jHg8c3ViPjI8L3N1Yj49Mu+8jDxicj7iiLRB77yILTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4aVJQR21qQUFBQkdhajJzTlE0NzgucG5nIj7vvIww77yJ77yMQu+8iDLvvIww77yJPGJyPuKItUPvvIgw77yMLTHvvIk8YnI+4oi0QUPiiqVCQ++8jDxicj7ikaAg5LulQUPkuLrlupXovrnvvIzliJlCROKIpUFD77yMPGJyPuWwhkHvvIxD54K55Luj5YWleT1heCti5b6X77yaPGJyPjxpbWcgd2lkdGg9OTQgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGpoNVZ5REFBQUM0Umd6NzNFNjk0LnBuZyI+77yMPGJyPuino+W+l++8mjxicj48aW1nIHdpZHRoPTU1IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqQjZqbk1BQUFDR25SaTV3RTg4OS5wbmciPu+8jDxicj7iiLRBQ+eahOino+aekOW8j+S4uu+8mnk9LTJ4LTHvvIw8YnI+5Y+v6K6+QkTnmoTop6PmnpDlvI/kuLp5PS0yeCti77yMPGJyPuaKikLvvIgy77yMMO+8ieS7o+WFpeW+l0JE6Kej5p6Q5byP5Li6eT0tMngrNO+8jDxicj7op6PmlrnnqIvnu4Q8aW1nIHdpZHRoPTEwMCBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRS9yQkFDRkZQcks4akNCNlh0QUFBRExUM0tFRzAyNDEucG5nIj48YnI+IOW+l0TvvIgtPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaTN2bVdBQUFCR3pPZVB4STU3My5wbmciPu+8jDnvvIk8YnI+4pGhIOS7pUJD5Li65bqV6L6577yM5YiZQkPiiKVBRO+8jDxicj7lsIZC77yIMu+8jDDvvInvvIxD77yIMO+8jC0x77yJ5Luj5YWleT1reCtj5Lit77yMPGJyPjxpbWcgd2lkdGg9NzkgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGppQ01QZUFBQUNocnMyTGZ3OTI4LnBuZyI+77yMPGJyPuino+W+l++8mjxpbWcgd2lkdGg9NDggaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvOEYvQ0UvckJBQ0ZGUHJLOGlUcVBQNEFBQUNQSDNVR0lrNDA2LnBuZyI+PGJyPuKItEJD55qE6Kej5p6Q5byP5Li6eT0wLjV4LTHvvIw8YnI+5Y+v6K6+QUTnmoTop6PmnpDlvI/kuLp5PTAuNXgrYu+8jOaKikHvvIg8aW1nIHdpZHRoPTUgaGVpZ2h0PTQyIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvQzkvOUMvckJBQ0UxUHJLOGlSUEdtakFBQUJHYWoyc05RNDc4LnBuZyI+77yMMO+8ieS7o+WFpTxicj7lvpdBROino+aekOW8j+S4unk9MC41eCswLjI177yMPGJyPuino+aWueeoi+e7hDxpbWcgd2lkdGg9MTAwIGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaFJQdmVBQUFEVkFIajBPZzQ5NS5wbmciPu+8jDxicj7lvpdE77yIPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzhGL0NEL3JCQUNGRlBySzd6emh1SUdBQUFCRXlVRGdXczU1Ni5wbmciPu+8jDxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4amkzdm1XQUFBQkd6T2VQeEk1NzMucG5nIj7vvIk8YnI+57u85LiK77yM5omA5Lul5a2Y5Zyo5Lik54K577ya77yILTxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC9DOS85Qy9yQkFDRTFQcks4amkzdm1XQUFBQkd6T2VQeEk1NzMucG5nIj7vvIw577yJ5oiW77yIPGltZyB3aWR0aD01IGhlaWdodD00MiBzcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwL0M5LzlDL3JCQUNFMVBySzhqaTN2bVdBQUFCR3pPZVB4STU3My5wbmciPu+8jDxpbWcgd2lkdGg9NSBoZWlnaHQ9NDIgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC84Ri9DRC9yQkFDRkZQcks3enpodUlHQUFBQkV5VURnV3M1NTYucG5nIj7vvIkuIDxicj7mlYXpgIlD