挑战习题
1/5单选题
难度:

1.

如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若BC=4,CD=2,则BE的长为(  )




A

B

C

D

提示1:
PHA+6aaW5YWI77yM5qC55o2u4oCc55u06KeS5LiJ6KeS5b2i5pac6L655LiK55qE5Lit57q/562J5LqO5pac6L6555qE5LiA5Y2K4oCd5rGC5b6X5pac6L65QUI9MkNEPTQ8aW1nIHNyYz0iaHR0cHM6Ly9wMi5xaW5nZ3VvLmNvbS9HMS9NMDAvNjkvNkYvckJBQ0ZGT1plbXFRZEE1Q0FBQUJjVGRwOElFMzc5LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC82OS82Ri9yQkFDRkZPWmVtcVFkQTVDQUFBQmNUZHA4SUUzNzkucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTciPu+8jOWImeWcqFJ04pazQUJD5Lit55Sx5Yu+6IKh5a6a55CG5rGC5b6X57q/5q61QUM9OO+8m+WFtuasoe+8jOWIqeeUqOS4ieinkuW9ouS4reS9jee6v+WumueQhuaxguW+l0NFPTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNS85Ni9yQkFDRTFPWmVtcncwRmV5QUFBQkdUNTNHQU05NDMucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E1Lzk2L3JCQUNFMU9aZW1ydzBGZXlBQUFCR1Q1M0dBTTk0My5wbmciIGhlaWdodD0iNDIiIHdpZHRoPSI1Ij5BQz0077yb5pyA5ZCO77yM5ZyoUnTilrNCQ0XkuK3vvIzliKnnlKjli77ogqHlrprnkIbmnaXmsYLnur/mrrVCReeahOmVv+W6pi48L3A+
正确答案:RA==
PHA+6Kej77ya5aaC5Zu+77yM4oi15ZyoUnTilrNBQkPkuK3vvIziiKBBQ0I9OTDCsO+8jOeCuUTmmK/mlpzovrlBQueahOS4reeCue+8jENEPTI8aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNjkvNkYvckJBQ0ZGT1plbXFqOFh6eEFBQUJieHJoODk0NDY1LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC82OS82Ri9yQkFDRkZPWmVtcWo4WHp4QUFBQmJ4cmg4OTQ0NjUucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iMTYiPu+8jDxicj7iiLRBQj0yQ0Q9NDxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC82OS82Ri9yQkFDRkZPWmVtcWo4WHp4QUFBQmJ4cmg4OTQ0NjUucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzY5LzZGL3JCQUNGRk9aZW1xajhYenhBQUFCYnhyaDg5NDQ2NS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSIxNiI+Ljxicj7lj4jiiLVCQz0077yMPGJyPuKItEFDPTxpbWcgc3JjPSJodHRwczovL3AyLnFpbmdndW8uY29tL0cxL00wMC82OS82Ri9yQkFDRkZPWmVtcXp2OC1GQUFBQ0h6SURVZ2MyMDEucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDIucWluZ2d1by5jb20vRzEvTTAwLzY5LzZGL3JCQUNGRk9aZW1xenY4LUZBQUFDSHpJRFVnYzIwMS5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI3MCI+PTxpbWcgc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC9BNS85Ni9yQkFDRTFPWmVtcUIwWDh6QUFBQjVqdTVIa2M3MTAucG5nIiBkYXRhLWNrZS1zYXZlZC1zcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E1Lzk2L3JCQUNFMU9aZW1xQjBYOHpBQUFCNWp1NUhrYzcxMC5wbmciIGhlaWdodD0iMjEiIHdpZHRoPSI1NCI+PTguPGJyPuKIteKIoEFDQj05MMKw77yMREXiiqVBQ++8jDxicj7iiLREReKIpUJDLjxicj7iiLXngrlE5piv5pac6L65QULnmoTkuK3ngrnvvIw8YnI+4oi0REXmmK/ilrNBQkPnmoTkuK3kvY3nur/vvIw8YnI+4oi0Q0U9PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwL0E1Lzk2L3JCQUNFMU9aZW1ydzBGZXlBQUFCR1Q1M0dBTTk0My5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvQTUvOTYvckJBQ0UxT1plbXJ3MEZleUFBQUJHVDUzR0FNOTQzLnBuZyIgaGVpZ2h0PSI0MiIgd2lkdGg9IjUiPkFDPTTvvIw8YnI+4oi05ZyoUnTilrNCQ0XkuK3vvIxCRT08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNjkvNkYvckJBQ0ZGT1plbXJUWktoMkFBQUNCeUMxSkxjNDIyLnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC82OS82Ri9yQkFDRkZPWmVtclRaS2gyQUFBQ0J5QzFKTGM0MjIucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNjgiPj08aW1nIHNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNjkvNkYvckJBQ0ZGT1plbXJTOE9hRUFBQUJ2eVh4eG5RNzE4LnBuZyIgZGF0YS1ja2Utc2F2ZWQtc3JjPSJodHRwczovL3AxLnFpbmdndW8uY29tL0cxL00wMC82OS82Ri9yQkFDRkZPWmVtclM4T2FFQUFBQnZ5WHh4blE3MTgucG5nIiBoZWlnaHQ9IjIxIiB3aWR0aD0iNTEiPj00PGltZyBzcmM9Imh0dHBzOi8vcDEucWluZ2d1by5jb20vRzEvTTAwLzY5LzZGL3JCQUNGRk9aZW1xaWxQU3BBQUFCY2hmZ2RJZzQwNi5wbmciIGRhdGEtY2tlLXNhdmVkLXNyYz0iaHR0cHM6Ly9wMS5xaW5nZ3VvLmNvbS9HMS9NMDAvNjkvNkYvckJBQ0ZGT1plbXFpbFBTcEFBQUJjaGZnZElnNDA2LnBuZyIgaGVpZ2h0PSIyMSIgd2lkdGg9IjE2Ij4uPGJyPuaVhemAiUQuPC9wPg==